380L0836

17.9.80

Diario Oficial de las Comunidades Europeas

N° L 246/1

DIRECTIVA DEL CONSEJO

de 15 julio de 1980

por la que se modifican las Directivas que establecen las normas básicas relativas a la protección sanitaria de la población y los trabajadores contra los peligros que resultan de las radiaciones ionizantes

(80/836/Euratom)

EL CONSEJO DE LAS COMUNIDADES EUROPEAS.

Visto el Tratado constitutivo de la Comunidad Europea de la Energia Atómica y, en particular, sus artículos 31 y 32,

Vista la propuesta de la Comisión elaborada previo dictamen del grupo de personalidades designadas por el Comité Científico y Técnico entre los expertos científicos de los Estados miembros.

Visto el dictamen del Parlamento Europeo (1),

Visto el dictamen del Comité económico y social (2),

Considerando que el Tratado constitutivo de la Comunidad Europea de la Energia Atómica prescribe que las normas básicas relativas a la protección sanitaria de la población y los trabajadores contra los peligros que resulten de las radiaciones ionizantes, tal como están previstas en el artículo 30, deben establecerse con vistas a que cada Estado, de conformidad con el artículo 33, esté en condiciones de adoptar las disposiciones legales, reglamentarias y administrativas adecuadas para asegurar su cumplimiento, de adoptar las medidas necesarias en lo referente a la enseñanza, la educación y la formación profesional y adoptar dichas disposiciones en armonía con las aplicables a este respecto, en los demás Estados miembros;

Considerando que el Consejo ha adotado, el 2 de feberero de 1959, directivas por las que se establecen dichas normas básicas (3) cuya última modificación la constituye la Directiva 76/579/Euratom (4);

Considerando que el interés por la revisión parcial de dichas directivas se ha puesto de manifiesto a la luz de la evolución de los concimientos científicos en materia de radioprotección;

Considerando que la protección sanitaria de los trabajadores y la población exige que se someta a regulación toda actividad que implique un peligro resultante de las radiaciones ionizantes;

Considerando que las normas básicas deben adaptarse a las condiciones de empleo de la energía nuclear y que varian según se trate de la seguridad individual de los trabajadores expuestos a las radiaciones ionizantes, o de la protección de la población;

Considerando que la protección sanitaria de los trabajadores expuestos a las radiaciones ionizantes exige, por una parte, el establecimiento de una organización para la prevención de la exposición y evaluación de la exposición y, por otra parte, una vigilancia médica adecuada:

Considerando que la protección sanitaria de la población implica un sistema de vigilancia, de inspección y de intervención en caso de accidente:

Considerando el carácter ejemplar, con relación, en particular, a otros estudios realizados sobre otros riesgos, de los estudios sobre el riesgo de las radiaciones ionizantes, la importancia de los resultados positivos obtenidos en radioprotección y consciente del papel que debe jugar una armonización comunitaria de las normas básicas;

Considerando que los Estados miembros están obligados a adoptar, antes del 3 de junio de 1980, las medidas necesarias para cumplir la Directiva 76/579/Euratom; que las normas básicas determinadas en la presente Directiva y en la Directiva anteriormente citada, son parcialmente comunes a las dos Directivas; que conviene evitar, en esta materia, modificaciones de las legislaciones nacionales a intervalos demasiado cortos; que conviene, por tanto, autorizar a los Estados miembros para no cumplir la Directiva anteriormente citada y fijar para los Estados miembros que no se beneficien de dicha autorización un plazo suficientemente largo para cumplir la presente Directiva, y un plazo más corto para los Estados miembros que no se beneficien de ella,

DO n° C 140 de 5. 6. 1979, p. 174. DO n° C 128 de 21. 5. 1979, p. 31.

DO n° 11 de 20. 2. 1959, p. 221/59.

DO n° L 187 de 12. 7. 1976, p. 1.

TÍTULO I

DEFINICIONES

Artículo 1

Para la aplicación de la presente Directiva, los términos que figuran a continuación se entenderán de la siguiente manera:

a) Términos físicos, tamaños y unidades

Radiaciones ionizantes: radiaciones compuestas de fotones o de partículas capaces de determinar la formación de iones directa o indirectamente.

Actividad (A): cociente de dN dividido por dt, siendo dN el número de transformaciones nucleares espontáneas que se producen en una cantidad de un radionucleido durante el tiempo dt

$$A = \frac{dN}{dt}$$

Dicha definición no se aplicará a los términos «actividad» y «actividades» que figuran en los artículos 2, 3, 4, 6 y 13.

Bequerelio (Bq): nombre especial de la unidad S.I. de actividad.

$$1 \text{ Bq} = 1 \text{ s}^{-1}$$

En la presente Directiva se dan igualmente los valores que se utilizarán cuando la actividad se exprese en curios

1 Ci =
$$3.7 \times 10^{10}$$
 B q (exactamente)
1 Bq = 2.7027×10^{-11} Cl

Dosis absorbida (D): cociente de de dividido por dm, siendo de la energía media comunicada por las radiociones ionizantes a la materia en un elemento de volumen y dm la masa de materia contenida en dicho elemento de volumen.

$$D = \frac{d\varepsilon}{dm}$$

Gray (Gy): nombre especial de la unidad S.I. de dosis absorbida.

$$1 Gy = 1 J kg^{-1}$$

En la presente Directiva, se dan igualmente los valores que se utilizarán cuando la dosis absorbida se exprese en rads (rd).

$$1 \text{ rd} = 10^{-2} \text{ Gy}$$

 $1 \text{ Gy} = 100 \text{ rd}$

Transferencia lineal de energia o poder de moderación lineal de colisión restringida (L_{Δ}): cociente de dE dividido por dl, siendo dl la distancia recorrida por una partícula cargada en un medio y dE la pérdida de energía media debida a los choques con transferencia de energí inferior a un valor dado Δ

$$L_{\Delta} = \frac{dE}{dI_{\Delta}}$$

Para las necesidades de radioprotección se tendrán en cuenta todas las energías transferidas de manera que

L_∆ se convierte en L_∞

Fluencia (de partículas) (Φ): cociente de dN dividido por da siendo dN el número de partículas que penetran en una esfera y da el área de un gran círculo de dicha esfera.

$$\Phi = \frac{dN}{da}$$

Tasa de fluencia de partículas (ϕ): cociente de d Φ dividido por dt, siendo d Φ el crecimiento de fluencia en el intervalo de tiempo dt.

$$\varphi = \frac{d\Phi}{dt}$$

b) Términos radiológicos, biológicos y médicos

Exposición: Toda exposición de personas a radiaciones ionizantes. Se distinguirán:

- exposición externa: exposición que provenga de fuentes situadas fuera del organismo,
- exposición interna: exposición que provenga de fuentes situadas dentro del organismo,
- exposición total: suma de la exposición externa y de la exposición interna.

Exposición continua: exposición externa permanente cuya intensidad, no obstante, podrá variar con el tiempo, o exposición interna resultante de una incorporación permanente cuya importancia, no obstante, podrá variar con el tiempo.

Exposición única: exposición externa de corta duración o exposición interna que resulte de una incorporación de radionucleidos en un tiempo corto.

Factor de calidad (Q): función de transferencia lineal de energía (L_{∞}) utilizada para ponderar las dosis absorbidas a fin de dar cuenta de su significación para las necesidades de la radioprotección. Los valores de los factores de calidad que se utilicen para evaluar el equivalente de dosis se fijan, para los diferentes tipos de radiaciones, en el Anexo II.

Factor de calidad efectiva (Q): valor medio del factor de calidad cuando la dosis absorbida sea liberada por partículas que tengan diferentes valores L_{∞} . Se calculará según la relación

$$Q = \frac{1^{\infty}}{D_0} Q \frac{dD}{dL_{\infty}} dL_{\infty}$$

Dosis equivalente (H): el producto de la dosis absorbida (D) multiplicado por el factor de calidad (Q) y por el producto de los demás factores modificativos (N). Cuando la palabra «dosis» sea utilizada sola, se considerará que se trata siempre de dosis equivalente.

Sievert (Sv): nombre especial de la unidad S.I. de dosis equivalente

$$1 \text{ Sv} = 1 \text{ J kg}^{-1}$$

En la presente Directiva se dan igualmente los valores que se deberán utilizar cuando la dosis equivalente se exprese en rems.

$$1 \text{ rem} = 10^{-2} \text{ Sv}$$

 $1 \text{ Sv} = 100 \text{ rem}$

Índice de dosis equivalente profunda $(H_{l,\,p})$ en un punto: dosis equivalente máxima en el volumen central de 28 cm de diámetro de una esfera de 30 cm de diámetro centrada en dicho punto y constituida por un material equivalente al tejido blando con una densidad de l g c cm-3.

Índice de dosis equivalente superficial $(H_{I,\,s})$ en un punto: dosis equivalente máxima en el volumen comprendido entre 0,07 mm y 1 cm de la superficie de una esfera de 30 cm de diámetro centrada en dicho punto y constituida por un material equivalente al tejido blando con una densidad de 1 g \cdot cm⁻³. No será necesario evaluar el equivalente de dosis en la capa externa de 0,07 mm de espesor.

Dosis efectiva: suma de dosis equivalentes medias ponderadas en los diferentes órganos o tejidos.

Exposición global: exposición del cuerpo entero, considerada homogénea.

Exposición parcial: exposición esencialmente sobre una parte del organismo o sobre uno o varios órganos o tejidos, o exposición del cuerpo entero considerada no homogénea.

Dosis comprometida: dosis que será recibida, en cincuenta años, a nivel de un órgano o de un tejido, como consecuencia de la incorporación de uno o varios radionucleidos.

Dosis genética: dosis que, si fuere efectivamente recibida por cada individuo de una población dada, desde la concepción a la edad media de procreación, acarrearía la misma carga genética para dicha población considerada en su conjunto que las dosis realmente recibidas por los individuos de dicha población. La dosis genética se podrá calcular multiplicando el producto del legado de radiación anual por la edad media de procreación fijada en los 30 años.

Legado de radiación anual: En una población, la media de las dosis anuales individuales de las gonadas; cada dosis individual se podrá ponderar por un factor que tenga en cuenta el número probable de niños que serán engendrados después de la radiación.

Dosis colectiva: la dosis colectiva (S) para una población o un grupo vendrá dada por la suma

$$S = \sum_{i} Hi Pi$$

siendo H_i la media de las dosis globales o de las dosis en un organismo dado sobre los P_i miembros del subgrupo i de la población o del grupo.

Contaminación radiactiva: contaminación de una materia, de una superficie, de un medio cualquiera, o de una persona por substancias radiactivas. En el caso particular del cuerpo humano dicha contaminación radiactiva comprenderá a la vez la contaminación externa cutánea y la contaminación interna por cualquiera que sea la vía.

Limites de dosis: límites fijados en la presente Directiva para las dosis resultantes de la exposición de los trabajadores expuestos, de los aprendices, de los estudiantes y del público en general, sin tener en cuenta las dosis procedentes del fondo radiactivo natural y de la exposición sufrida por los individuos a consecuencia de exámenes y tratamientos médicos a los que se hubieren sometido. Los límites de dosis se aplicarán a la suma de la dosis recibida por exposición externa durante el período considerado y la dosis comprometida que resulte de la incorporación de radionucleidos durante el mismo período.

Incorporación: actividad introducida en el organismo por el medio externo.

Limite de incorporación anual: actividad que, introducida en el organismo, acarreará para un individuo dado, una dosis comprometida igual al límite de la dosis anual apropiada fijada en los artículos 8, 9, 10 y 12.

Limite derivado de concentración de un radionucleido en el aire inhalado: concentración media anual en el aire inhalado, expresada en unidades de actividad por unidad de volumen que, para 2 000 horas de trabajo al año, suponga una incorporación igual al límite anual.

Radiotoxicidad: toxicidad debida a las radiaciones ionizantes emitidas por un radionucleido incorporado y por sus descendientes; la radiotoxicidad no estará relacionada sólamente con las características radioactivas de dicho radionucleido, sino también con su estado químico y físico y con el metabolismo de dicho elemento en el organismo o en el órgano.

c) Otros términos

Fuente: aparato o substancia capaz de emitir radiaciones ionizantes.

Fuente sellada: fuente constituida por substancias radioactivas sólidamente incorporadas en materias sólidas y efectivamente inactivas, o sellada en un envoltorio inactivo que presente una resistencia suficiente para evitar, en condiciones normales de empleo, cualquier dispersión de substancias radiactivas.

Substancia radiactiva: cualquier substancia que contenga uno o varios radionucleidos cuya actividad o concentración no pueda ser despreciada por razones de radioprotección.

Fondo radiactivo natural: conjunto de radiaciones ionizantes procedentes de fuentes naturales terrestres y cósmicas, en la medida en que la exposición que resulte de ella no sea aumentada de manera significativa por la acción del hombre.

Conjunto crítico: conjunto de materiales fisionables donde se pueda mantener una reacción en cadena.

Población en su conjunto: toda la población que incluya a los trabajadores expuestos, los aprendices, los estudiantes y el público en general.

Trabajadores expuestos: personas sometidas, por causa de su trabajo, a una exposición que pudiera entrañar dosis anuales superiores al décimo de los límites de dosis anual determinada para los trabajadores.

Grupos de referencia (grupos críticos) de la población: grupos que incluyan a personas cuya exposición es razonablemente homogénea y representativa de la de los individuos más expuestos de la población.

Público en general: individuos de la población, con excepción de los trabajadores expuestos, aprendices y estudiantes, durante sus horas de trabajo.

Zona controlada: zona sometida a regulación por razones de protección contra las radiaciones ionizantes y con control de acceso.

Zona vigilada: zona sometida a una adecuada vigilancia con fines de protección contra las radiaciones ionizantes.

Nivel de intervención: valor de dosis absorbida, de dosis equivalente, o valor derivado que se fija para establecer los planes de urgencia.

Médico autorizado: médico responsable de la vigilancia média de los trabajadores de la categoría A mencionados en el artículo 23 cuya calificación y autoridad sean reconocidas por las autoridades competentes.

Experto cualificado: persona con los conocimientos y la preparación necesarios, para realizar exámenes físicos, técnicos o radiotoxicológicos o para dar todo tipo de asesoramiento a fin de garantizar una protección eficaz de los individuos y un funcionamiento correcto de las instalaciones de protección, según el caso, y cuya cualificación sea reconocida por las autoridades competentes.

Accidente: acontecimiento imprevisto que provoque daños en una instalación o una perturbación del buen funcionamiento de dicha instalación y que pueda determinar para una o varias personas una dosis superior a los límites de dosis.

Exposición excepcional concertada: exposición que implique la superación de uno de los límites de dosis anual fijados para los trabajadores expuestos, que se autoriza a título excepcional en determinadas situaciones que se produzcan en el curso de operaciones normales, cuando no puedan utilizarse otras técnicas que no impliquen tales exposiciones.

Exposición accidental: exposición de carácter fortuito e involuntario que implique la superación de uno de los límites de dosis determinados para los trabajadores expuestos.

Exposición de urgencia: exposición justificada en condiciones anormales para prestar ayuda a individuos en peligro, prevenir la exposición de un gran número de personas o para salvar una instalación de valor, que implique la superación de uno de los límites de dosis determinados para los trabajadores. Igualmente, se podrán sobrepasar los límites determinados para las exposiciones excepcionales concertadas. Sólamente se podrán someter a dichas exposiciones los voluntarios.

Aprendiz: persona que, en el seno de una empresa, tecibe una formación y una enseñanza para ejercer un oficio particular.

TÍTULO II

ÁMBITO DE APLICACIÓN, DECLARACIÓN Y AUTORIZACIÓN

Articulo 2

La presente Directiva se aplicará a la producción, tratamiento, manipulación utilización, posesión, almacenamiento, transporte y eliminación de substancias radiactivas naturales y artificiales y a cualquier otra actividad que implique un riesgo resultante de las radiaciones ionizantes.

Articulo 3

Cada Estado miembro someterá a una declaración el ejercicio de las actividades mencionadas en el artículo 2. Sin perjuicio del artículo 5, se someterán dichas actividades a autorización previa, en los casos determinados por cada Estado miembro teniendo en cuenta el posible peligro y otras consideraciones pertinentes.

Articulo 4

Sin perjuicio del artículo 5, no se podrá aplicar el régimen de declaración y de autorización previa a las actividades en que intervengan:

- a) substancias radiactivas, cundo la cantidad no supere en total los valores indicados en el Anexo I;
- b) substancias radiactivas cuya concentración sea inferior a 100 Bq g⁻¹ (0,0027μ Ci g⁻¹); dicho límite podrá alcanzar 500 Bq g⁻¹ (0,014μ Ci g⁻¹) para las substancias radiactivas naturales sólidas;
- c) el uso de instrumentos de navegación y de aparatos de relojería que contengan pinturas radioluminiscentes, pero no su fabricación o su reparación con excepción del caso previsto en la letra a);
- d) aparatos que emitan radiaciones y que contengan substancias radiactivas en cantidades superiores a los valores previstos en la letra a), en las condiciones siguientes:
 - ser de un tipo autorizado por la autoridad competente;
 - ofrecer ventajas que, con relación al riesgo potencial y al dictamen de las autoridades competentes, justifiquen su utilización;
 - estar construidos en forma de fuentes selladas que aseguren una protección eficaz contra todo contracto con las substancias radiactivas y contra cualquier fuga de éstas;

 no presentar, en ningún punto situado a 0,1 m de la superficie accesible del aparato y en las condiciones de funcionamiento normales, una tasa de dosis superior a

$$1 \mu \text{ Sy h}^{-1} (0, 1 \text{ mrem h}^{-1})$$

- e) aparatos diferentes a los mencionados en la letra f) que emitan radiaciones ionizantes pero que no contengan substancias radioactivas en las condiciones siguientes:
 - ser de un tipo autorizado por la autoridad competente;
 - 2. ofrecer ventajas que, con relación al riesgo potencial y con el dictamen de las autoridades competentes justifiquen su utilización

٧

 no presentar, en ningún punto situado a 0,1 m de la superficie accesible del aparato y en las condiciones de funcionamiento normales una tasa de dosis superior a

$$1 \mu \text{ Sy h}^{-1} (0, 1 \text{ mrem h}^{-1})$$

f) Tubos catódicos para que proporcionen imágenes visuales que no presenten, en ningún punto situado a 0,005 m de la superficie accesible del aparato, una tasa de dosis superior a

$$5 \mu \text{ Sv h}^{-1} (0.5 \text{ mrem h}^{-1})$$

Artículo 5

Aparte de los casos de prohibición previstos por la legislación nacional y cualquiera que sea la importancia del peligro, se deberá aplicar un régimen de autorización previa para:

- a) la administración de substancias radiactivas a personas, con fines de diagnóstico, tratamiento o investigación;
- la utilización de substancias radiactivas en los juguetes y la importación de juguetes que contengan substancias radiactivas;
- c) adición de substancias radiactivas en la producción y fabricación de productos alimenticios, medicamentos, productos cosméticos y productos de uso doméstico (con excepción de los instrumentos y aparatos mencionados en la letra c) del artículo 4), así como la importación comercial de dichas mercancías, medicamentos y productos, si contuvieren substancias radiactivas.

TÍTULO III

LIMITACIÓN DE DOSIS EN LOS CASOS DE EXPOSICIONES CONTROLABLES

Articulo 6

La limitación de las dosis individuales y colectivas que resulten de exposiciones controlables se deberá basar en los principios generales siguientes:

- a) toda actividad que implique una exposición a las radiaciones ionizantes se deberá justificar por las ventajas que represente;
- b) todas las exposiciones deberán mantenerse en el nivel más débil que sea razonablemente posible;
- c) sin perjuicio del artículo 11, la suma de las dosis recibidas y comprometidas no deberá sobrepasar los límites de dosis fijados, en el presente Título para los trabajadores expuestos, los aprendices y los estudiantes, así como para el público en general.

Los principios definidos es las letras a) y b) se aplicarán a todas las exposiciones a radiaciones ionizantes, incluidas las exposiciones médicas. El principio definido en la letra c) no se aplicará a la exposición a que se sometan los individuos a causa de exploraciones o tratamientos médicos.

CAPÍTULO I

LIMITACIÓN DE DOSIS PARA LOS TRABAJADORES EXPUESTOS

Articulo 7

- 1. Ningún trabajador de menos de 18 años cumplidos será asignado a un puesto de trabajo que le convierta en un trabajador expuesto.
- 2. No se admitirán para los trabajos que impliquen un riesgo de contaminación radiactiva elevado a mujeres en período de lactancia; en ese caso, se asegurará una vigilancia particular de la contaminación radiactiva del organismo.

Articulo 8

Exposición global del organismo

- 1. El límite de dosis para la exposición global del organismo de los trabajadores expuestos será de 50 mSv (5 rem).
- 2. Para las mujeres en estado de procreación, la dosis en el abdomen no sobrepasará 13 mSv (1,3 rem) en el curso de un trimestre.

3. Desde la comprobación del embarazo, deberán tomarse las medidas necesarias para que la exposición de la mujer en el medio profesional sea tal que la dosis acumulada en el feto durante el lapso de tiempo transcurrido entre la comprobación del embarazo y el momento del parto sea lo más reducida posible y no sobrepase en ningún caso 10 mSv (1 rem). En general, se podrá garantizar esta limitación colocando a la mujer en condiciones de trabajo propias de los trabajadores incluidos en la categoria B.

Artículo 9

Exposición parcial del organismo

En caso de exposición parcial del organismo:

- a) El límite para la dosis efectiva evaluada según las modalidades fijadas en la letra E del Anexo II será de 50 mSv (5 rems) al año; la dosis media en cada uno de los órganos o tejidos afectados no deberá sobrepasar 500 mSv (50 rems) al año;
- b) además:
 - el límite de dosis para el cristalino será de 300 mSv (30 rem) al año,
 - el límite de dosis para la piel será de 500 mSv (50 rem) al año. Cuando la exposición resulte de una contaminación radiactiva cutánea dicho límite se aplicará a la dosis media sobre cualquier superficie de 100 cm²,
 - el límite de dosis para las manos, antebrazos, pies y tobillos será de 500 mSv (50 rem) por año.

CAPÍTULO II

LIMITACIÓN DE LAS DOSIS PARA APRENDICES Y ESTUDIANTES

Articulo 10

- 1. Los límites de dosis para aprendices y estudiantes de dieciocho años o más que se dediquen a una profesión en la que se expongan a radiaciones ionizantes o que por causa de sus estudios estén obligados a utilizar fuentes, serán iguales a los límites de dosis fijados en los artículos 8 y 9 para los trabajadores expuestos.
- 2. Los limites de dosis para aprendices y estudiantes de dieciseis a dieciocho años que se dediquen a una

profesión en la que se expongan a radiaciones ionizantes o que por causa de sus estudios etén obligados a utilizar fuentes, serán iguales a los tres décimos de los límites de dosis anual fijados en los artículos 8 y 9 para los trabajadores expuestos.

3. Los límites de dosis para aprendices y estudiantes de dieciseis años o más que no estén sometidos a las disposiciones previstas en los apartados 1 y 2, y para aprendices y estudiantes de menos de dieciseis años, serán los mismos que los límites de dosis fijados en el artículo 12 para el público en general. Sin embargo, las contribuciones a las dosis anuales que pudieren recibir por su formación no deberán sobrepasar un décimo de los límites de dosis fijados en el artículo 12, y la dosis durante una exposición no deberá sobrepasar una centésima de dichos límites de dosis.

CAPÍTULO III

EXPOSICIONES EXCEPCIONALES CONCERTADAS

Artículo 11

1. Sólamente trabajadores que pertenezcan a la categoría A definida en el artículo 23, podrán estar sometidos a exposiciones excepcionales concertadas. Toda exposición excepcional concertada deberá ser objeto de una autorización apropiada.

Dicha autorización sólo podrá concederse en situaciones excepcionales que se produzcan en el curso de operaciones normales cuando no puedan utilizarse otras técnicas que no impliquen tales exposiciones. Se deberá tener en cuenta, para conceder dicha autorizaci + lo n, la edad y estado de salud de los trabajadores afectados.

- 2. Las dosis recibidas o comprometidas durante exposiciones excepcionales concertadas no deberán sobrepasar en un año el doble de los límites de dosis anual fijados en los artículos 8 y 9 y, en el transcurso de la vida, el quintuplo de dichos límites de dosis.
- 3. No se deberán autorizar las exposiciones excepcionales concertadas:
- a) si el trabajador hubiere sufrido, en los doce meses anteriores, una exposición que entrañe dosis que sobrepasen los límites de dosis anual fijados en los artículos 8 y 9;
- b) si el trabajador hubiere sufrido anteriormente exposiciones accidentales o de urgencia que entrañen dosis cuya suma sobrepasare cinco veces los límites de dosis anual determinados en los artículos 8 y 9;
- si el trabajador fuere una mujer en estado de procrear.
- 4. La superación de los límites de dosis a causa de una exposición excepcional concertada no constituirá por sí misma un motivo para excluir al trabajador de sus ocupaciones habituales. Las condiciones de exposición ulteriores deberán cometerse al consentimiento del médico autorizado.

- 5. Cualquier exposición excepcional concertada se deberá consignar en el historial clínico previsto en el artículo 36, que también incluirá el valor estimado de la dosis y el de las actividades introducidas en el organismo.
- 6. Antes de sufrir una exposición excepcional concertada, todo trabajador deberá recibir una información apropiada sobre los riesgos y las precauciones que deberá tomar en el transcurso de dicha operación.

CAPÍTULO IV

LIMITACIÓN DE DOSIS PARA LA POBLACIÓN

Articulo 12

Límites de dosis para el público en general

- 1. Los límites de dosis siguientes para el público en general deberán cumplirse sin perjuicio del artículo 13.
- 2. En caso de exposición global del organismo, el límite de dosis será 5 mSv (0,5 rem) al año.
- 3. En caso de exposición parcial del organismo:
- a) el límite para la dosis efectiva evaluada según las modalidades fijadas en la letra E del Anexo II será 5 mSv (0,5 rem) al año; la dosis media en cada uno de los órganos o tejidos afectados no deberá sobrepasar 50 mSv (5 rems) al año;
- b) además:
 - el límite de dosis para el cristalino será 30 mSv (3 rem) al año,
 - el límite de dosis para la piel será 50 mSv (5 rem) al año,
 - el límite de dosis para las manos, antebrazos, pies y tobillos será 50 mSv (5 rem) al año.

Artículo 13

Exposición de la población en su conjunto

- 1. Cada Estado miembro deberá velar porque la contribución de cada actividad a la exposición de la población en su conjunto se mantenga en el valor mínimo requerido por dicha actividad, teniendo en cuenta los principios enunciados en las letras a) y b) del artículo 6.
- 2. El total de todas estas contribuciones deberá estar bajo control y, en particular, la dosis genética resultante del conjunto de dichas contribuciones deberá ser objeto de una estimación.
- 3. Los estados miembros comunicarán regularmente a la comisión los resultados de dichos controles y estimaciones.

TÍTULO IV

LÍMITES DERIVADOS

Articulo 14

La utilización de los límites derivados fijados en el presente Título constituirá un medio para asegurar el respeto de los límites de dosis definidos en el Título III; no obstante, podrán utilizarse otros métodos para conseguir dicho fin.

Artículo 15

Exposición únicamente externa

En caso de exposición únicamente externa del organismo entero o de una parte importante del organismo, se considerará que se cumplen los límites de dosis fijados en los artículos 8, 9 y 12 cuando se cumplan las condiciones definidas en el Anexo II.

Articulo 16

Exposición únicamente interna

En caso de exposición interna, se considerará que se cumplen los límites de dosis fijados en los artículos 8, 9 y 12 cuando los valores de las incorporaciones y concentraciones de radionucleidos en el aire no sobrepasen los valores fijados en el Anexo III.

a) Los cuadros del Anexo III establecen:

- los límites de incorporación anual de radionucleidos por inhalación para los trabajadores expuestos,
- los límites derivados de concentración de radionucleidos en el aire inhalado para los trabajadores expuestos. Dichos valores se deberán considerar como medias referidas a un año,
- los límites de incorporación anual de radionucleidos por inhalación y por ingestión para el público en general.
- b) Cuando se trate de una mezcla de radionucleidos, los métodos que se deberán utilizar se indicarán en el punto 2 del Anexo III.

Artículo 17

Exposiciones externa e interna combinadas

En caso de producirse una exposición externa de todo el organismo o de una parte importante del organismo y una contaminación radiactiva interna por uno o varios radionucleidos, se considerará que se cumplen los límites fijados en los artículos 8, 9 y 12 cuando se cumplan las condiciones establecidas en el Anexo II.

TÍTULO V

EXPOSICIONES ACCIDENTALES Y EXPOSICIONES DE URGENCIA DE LOS TRABAJADORES

Artículo 18

Toda exposición accidental o de urgencia deberá registrarse en el historial clínio del trabajador previsto en el artículo 36. En la medida de lo posible, las dosis recibidas o comprometidas en el transcurso de exposiciones accidentales o de urgencia se deberán registrar separadamente en la ficha de exposición prevista en el artículo 31. Por otra parte, se deberán aplicar las disposiciones del artículo 37. Sólamente se podrán someter a las exposiciones de urgencia los voluntarios.

TÍTULO VI

PRINCIPIOS FUNDAMENTALES DE PROTECCIÓN OPERACIONAL DE LOS TRABAJADORES EXPUESTOS

Artículo 19

La protección operacional de los trabajadores expuestos se basa en los principios siguientes:

- a) clasificación de los lugares de trabajo en diferentes zonas;
- b) clasificación de los trabajadores en diferentes categorías;
- c) aplicación de disposiciones y medidas de control relativas a dichas zonas diferentes y a categorías diferentes de trabajadores.

Dichos principios de protección se aplicarán igualmente a los aprendices y a los estudiantes mencionados en los apartados 1 y 2 del artículo 10.

CAPÍTULO I

MEDIDAS DE PREVENCIÓN DE LA EXPOSICIÓN

Sección primera

Clasificación y delimitación de zonas

Articulo 20

Con fines de protección, cada Estado miembro tomará medidas respecto a todos los lugares de trabajo donde exista riesgo de exposición a las radiaciones ionizantes.

En las zonas de trabajo en que las dosis no puedan sobrepasar un décimo de los límites de dosis anual fijados para los trabajadores expuestos, no será necesario prever disposiciones particulares con fines de radioprotección.

En las zonas de trabajo en que las dosis puedan sobrepasar un décimo de los límites de dosis anual fijados para los trabajadores expuestos, las medidas deberán adaptarse a la naturaleza de la instalación y de las fuentes, así como a la amplitud y a la naturaleza de los riesgos. La importancia de los medios de prevención y de vigilancia, así como su naturaleza y su calidad deberán estar en función de los riesgos vinculados a los trabajos que impliquen una exposición a las radiaciones ionizantes.

Se distinguirá:

a) la zona controlada

Toda zona donde puedan sobrepasarse los tres décimos de los límites de dosis anual fijados para los trabajadores, deberá constituir una zona controlada o ser incluida en ella.

En el Anexo IV figura, con carácter indicativo, una lista de establecimientos e instalaciones en las cuales la presencia de generadores o de fuentes que puedan ser el origen de una exposición justifica de manera general la delimitación de una o varias zonas controladas.

b) la zona vigilada

Se considerará zona vigilada toda zona en la cual se pueda sobrepasar un décimo de los límites de dosis anual fijados para los trabajadores expuestos y que no esté considerada como zona controlada.

Artículo 21

Se deberán delimitar las zonas controladas.

Teniendo en cuenta la naturaleza y la importancia de los riesgos radiológicos se deberá:

- a) organizar, dentro de las zonas controladas y vigiladas, una vigilancia de los daños radiológicos en el ambiente y, en particular, proceder, según los casos, a medir las actividades, dosis, tasas de dosis, así como al registro de los resultados;
- b) prever, dentro de las zonas controladas y vigiladas, consignas de trabajo adecuadas al riesgo radiológico;
- c) señalar los riesgos inherentes a las fuentes dentro de las zonas controladas;
- d) señalar las fuentes dentro de zonas controladas y vigiladas.

La ejecución de dichas tareas será asumida por expertos cualificados.

Articulo 22

En toda zona controlada, se deberá, como mímimo, reglamentar el acceso por medio de una señalización apropiada.

Sección 2

Clasificación de los trabajadores expuestos

Articulo 23

Se distinguirán, por motivos de control y vigilancia, dos categorías de trabajadores expuestos:

- categoria A: aquellos que puedan recibir una dosis superior a los tres décimos de uno de los límites de dosis anual,
- categoría B: aquellos que no puedan recibir dicha dosis.

Artículo 24

Se informará a los trabajadores expuestos, los aprendices y los estudiantes mencionados en los apartados I y 2 del artículo 10, de los peligros que presente su trabajo para la salud, de las precauciones que deberán tomar y de la importancia de cumplir las prescripciones técnicas y médicas así como de recibir una formación adecuada en el ámbito de la radioprotección.

Sección 3

Examen y control de los dispositivos de protección y de los instrumentos de medición

Artículo 25

Los exámenes y controles de los dispositivos de protección y de los instrumentos de medición deberán ser efectuados por expertos cualificados.

Dichos exámenes y controles comprenderán:

- a) el examen crítico previo de los proyectos de instalación desde el punto de vista de la radioprotección;
- b) la recepción de nuevas instalaciones desde el punto de vista de la radioprotección;
- c) la comprobación periódica de la eficacia de los dispositivos y técnicas de protección;
- d) la comprobación periódica del buen estado y funcionamiento de los instrumentos de medición y de su empleo correcto.

CAPITULO II

EVALUACIÓN DE LA EXPOSICIÓN

Articulo 26

La naturaleza y la frecuencia de la evaluación de la exposición serán establecidos de manera que aseguren en cada caso el cumplimiento de la presente Directiva.

Sección primera

Vigilancia colectiva

Artículo 27

Teniendo en cuenta los daños radiológicos, se deberá proceder a la medición:

- a) de las tasas de dosis o tasas de fluencia con indicación de la naturaleza y de la calidad de las radiaciones de que se trate;
- b) de la concentración atmosférica y la densidad superficial de las substancias radioactivas contaminantes con indicación de su naturalzea y de sus estados físico y químico.

Cuando sea procedente, los resultados de dichas medidas servirán para estimar las dosis individuales.

Sección 2

Vigilancia individual

Articulo 28

La evaluación de dosis individuales deberá ser sistemática para los trabajadores de la categoría A. Dicha evaluación se basará en mediciones individuales o, cuando éstas sean imposibles o insuficientes, en una valoración realizada a partir de mediciones individuales hechas en otros trabajadores expuestos o a partir de los resultados de la vigilancia colectiva prevista en el artículo 27.

Artículo 29

En caso de exposiciones accidentales o de urgencia se deberán valorar las dosis absorbidas ya sean exposiciones globales o exposiciones parciales.

Artículo 30

Los resultados de la vigilancia individual se deberán transmitir a un médico autorizado, a quién corresponderá interpretarlos desde el punto de vista sanitario. En caso de urgencia, dicha transmisión deberá ser inmediata.

Sección 3

Registro de los resultados

Artículo 31

Se consignarán y guardarán en achivos durante un período de al menos de treinta años:

- a) los resultados de las mediciones de vigilancia colectiva que hubieren servido para establecer las dosis individuales;
- b) la ficha de exposición que contenga los datos relativos a la evaluación de las dosis individuales;
- c) en caso de exposición accidental o de urgencia, los informes relativos a las circunstancias y a las medidas de intervención.

Para los documentos mencionados en las letras b) y c) el periodo de treinta años comenzará a contarse desde el fin del trabajo expuesto a las radiaciones ionizantes.

CAPÍTULO III

VIGILANCIA MÉDICA DE LOS TRABAJADORES EXPUESTOS

Artículo 32

La vigilancia médica de los trabajadores expuestos se basará en los principios que rijan habitualmente la medicina del trabajo. Comprenderá, según los casos, exámenes previos a la contratación y exámenes periódicos de la salud; la frecuencia y naturaleza de estos últimos estarán determinadas por el estado de salud del trabajador, las condiciones de trabajo y los incidentes que puedan resultar de éste.

Artículo 33

No se podrá emplear a ningún trabajador como trabajador expuesto durante ningún período si las conclusiones médicas se opusieren a ello.

Sección primera

Vigilancia médica de los trabajadores de la categoría A

Articulo 34

La vigilancia médica de los trabajadores de la categoría A será asegurada por médicos autorizados.

Comprenderá:

a) un examen médico previo a la contratación

Dicho examen tendrá por fin determinar la aptitud del trabajador para ocupar el empleo para el que haya sido considerado inicialmente. Comprenderá una revisión de su historial médico que mencione todas las exposiciones anteriores y conocidas a las radiaciones ionizantes que resulten bien de las funciones realizadas, bien de exámenes tratamientos médicos; comprenderá, igualmente, un examen clínico general y todas los exámenes necesarios para apreciar el estado general de salud del trabajador.

b) una vigilancia médica general

El médico autorizado deberá tener acceso a toda la información que considere necesaria para apreciar el estado de salud de los trabajadores vigilados y para valorar las condiciones del entorno existente en los lugares de trabajo en la medida en que puedan afectar a las condiciones físicas de los trabajadores para realizar las tareas que se les asignen.

c) exámenes médicos periódicos

La salud de los trabajadores deberá ser objeto de exámenes rutinarios para comprobar si los trabajadores continuan siendo aptos para ejercer`sus funciones. La naturaleza de dichos exámenes dependerá del carácter y de la importancia de la exposición a las radiaciones ionizantes y del estado de salud del trabajador. El estado de salud del trabajador se deberá examinar al menos una vez al año y más frecuentemente si las condiciones de exposición o el estado de salud del trabajador lo hicieren necesario.

El médico autorizado podrá indicar la necesidad de prolongar la vigilancia médica tras finalizar el trabajo, durante el tiempo que considere necesario para la protección de la salud del interesado.

Artículo 35

En lo que se refiere a la aptitud de los trabajadores de la categoría A, se adoptará la siguiente clasificacióu médica.

- apto,
- apto, en determinadas condiciones,
- no apto.

Artículo 36

- 1. Se elaborará un historial clínico actualizado para cada trabajador de la categoría A durante todo el tiempo que el interesado pertenezca a dicha categoría. Dicho historial se archivará inmediatamente durante un periodo mínimo de treinta años a partir de la terminación del trabajo expuesto a las radiaciones ionizantes.
- 2. El historial clínico incluirá las informaciones referentes a los destinos del trabajador, los resultados del examen médico previo a la contratación, y los exámenes periódicos de salud, una relación de las dosis que sirvan para comprobar que se han respetado los valores fijados en los artículos 8, 9 y 11, así como la relación de las dosis recibidas en el transcurso de exposiciones accidentales o de exposiciones de urgencia.

Sección 2

Vigilancia excepcional de los trabajadores expuestos

Articulo 37

Se deberá realizar una vigilancia excepcional siempre que se sobrepasen los límites de dosis fijados en los artículos 8 y 9. Las condiciones posteriores de exposición se someterán al acuerdo del médico autorizado.

Artículo 38

Los exámenes periódicos de salud previstos en el artículo 34 se complearán con los exámenes y las medidas de descontaminación y de terapéutica de urgencia que el médico autorizado considere necesarios.

Sección 3

Recursos

Articulo 39

Cada Estado miembro adoptará las modalidades de recurso contra las conclusiones a que se llegue en virtud de los artículos 33 y 37.

CAPÍTULO IV

Articulo 40

- 1. Cada Estado miembro tomará todas las medidas necesarias para que se garantice de forma eficaz la protección de los trabajadores expuestos. Determinará las prescripciones relativas a la clasificación de los lugares de trabajo y de los trabajadores, a la aplicación de las disposiciones dirigidas a prevenir la exposición y a las medidas de control correspondientes. Se crearán, además, uno o varios sistemas de inspección con vistas a los exámenes y controles previstos en la presente Directiva y a la promoción de las medidas de vigilancia y de intervención siempre que sean necesarias.
- 2. Cada Estado miembro adoptará las disposiciones necesarias para que los trabajadores tengan acceso a los resultados de las mediciones de exposición y de los exámenes biológicos que les afecten.
- 3. Cada Estado miembro adoptará las disposiciones necesarias para valorar la cualificación de los expertos responsables del examen y control de los diversos dispositivos de protección y de los instrumentos de medidas y para autorizar a los médicos encargados de la vigilancia médica de los trabajadores de la categoría A. Con este fin, cada Estado miembro velará por la formación de tales especialistas.
- 4. Cada Estado miembro se asegurará de que se han puesto a disposición de los servicios responsables, los medios necesarios para una radioprotección apropiada. Será necesario crear un servicio especial de radioprotección siempre que se trate de instalaciones que impliquen un riesgo de exposición o de contaminación radiactiva importante. Dicho servicio, que podrá ser común a varias instalaciones, deberá ser distinto de las unidades de producción y de explotación.
- 5. Cada Estado miembro facilitará, dentro de la Comunidad y según las modalidades apropiadas, el acceso a las informaciones útiles referentes a los destinos de cada trabajador expuesto y a las dosis recibidas.
- 6. Cada Estado miembro establecerá, para el uso por los médicos encargados de la vigilancia médica de los trabajadores expuestos, una lista que indique los criterios que conviene tener en cuenta para valorar la aptitud para la exposición a las radiaciones ionizantes.

TÍTULO VII

PRINCIPIOS FUNDAMENTALES DE PROTECCIÓN OPERACIONAL DE LA POBLACIÓN

· Artículo 41

Cada Estado miembro adoptará las disposiciones necesarias para aplicar los principios fundamentales de protección operacional de la población.

Artículo 42

La protección operacional de la población será el conjunto de medidas y controles que servirán para detectar y eliminar los factores que, en la producción y utiliza-

ción de radiaciones ionizantes o en el transcurso de una operación cualquiera que exponga a su acción, pudieren crear un riesgo de exposición no justificado para la población. La amplitud de los medios aplicados estará en función de la importancia de los riesgos de exposición, en particular, en caso de accidente, y de los datos demográficos. La protección operacional se aplicará en el sector médico así como en los otros sectores. La protección comprenderá el examen y el control de las medidas de protección, así como las determinaciones de dosis que se efectuarán para proteger a la población

Artículo 43

El examen y control de las medidas de protección incluirá entre otros aspectos:

- a) el examen y la aprobación de los proyectos de instalaciones que impliquen un riesgo de exposición, y de proyectos de implantación de dichas instalaciones en el territorio;
- b) la introducción de nuevas instalaciones referentes a la protección contra toda exposición o contaminación radiactiva que pueda desbordar el recinto del establecimiento, teniendo en cuenta las condiciones demográficas, meterológicas, geológicas, hidrológicas y ecológicas;
- c) la comprobación de la eficacia de los dispositivos técnicos de protección;
- d) la introducción, del punto de vista de la vigilancia de las perturbaciones radiológicas, de equipos de medición de la exposición y la contaminación radiactiva:
- e) la comprobación del buen estado de funcionamiento de los instrumentos de medida y de su empleo correcto;
- f) siempre que fuere necesario, la elaboración de planes de urgencia y su aprobación;
- g) el establecimiento y la aplicación de fórmulas de vertido y las medidas que se adopten en materia de medición.

Las tareas mencionadas en las letras a) a g) se realizarán según las modalidades determinadas por las autoridades competentes en función del grado de riesgo de exposición existente.

Articulo 44

- 1. La vigilancia de la salud de la población se basará, en particular, en la evaluación de las dosis recibidas por la población tanto en circunstancias normales como en caso de accidente.
- 2. La vigilancia se ejercerá:
- a) sobre el conjunto de la población del territorio;
- sobre los grupos de referencia de la población, en todos los lugares donde tales grupos puedan existir.

- 3. Las determinaciones de dosis que se efectuen para la protección de la población incluirán, entre otros aspectos, teniendo en cuenta los daños radiológicos:
- a) La evaluación de las exposiciones externas, con la indicación, según el caso, de la calidad de las radiaciones de que se trate;
- b) la evaluación de las contaminaciones radiactivas, con indicación de la naturaleza y de los estados físico y químico de las substancias radiactivas contaminantes, así como la determinación de la actividad de las substancias radiactivas y de su concentración;
- evaluación de las dosis que los grupos de referencia de la población puedan recibir en circunstancias normales o excepcionales y especificación de las características de dichos grupos;
- d) evaluación de la dosis genética y del legado anual de radiaciones, efectuada teniendo en cuenta las características demográficas. La suma de las dosis debidas a las diversas fuentes se deberá efectuar en la medida de lo posible;
- e) la frecuencia de las evaluaciones se fijará de manera que asegure en cada caso el cumplimiento de la presente Directiva;
- f) los documentos relativos a la medición de la exposición externa o de la contaminación radiactiva, así como los resultados de la evaluación de las dosis recibidas por la población, se deberán conservar en los archivos, e incluirán lo referente a las exposiciones accidentales o de urgencia.

Artículo 45

- 1. Cada Estado miembro creará un sistema de inspección para ejercer la supervisión de la protección sanitaria de la población sanitaria de la población, interpretar, desde el punto de vista sanitario, los resultados de las evaluaciones previstas en el apartado 3 del artículo 44 y comprobar el cumplimiento de los límites de dosis fijjados en el artículo 12.
- 2. Cada Estado miembro deberá promover todas las medidas de vigilancia y de intervención siempre que sean necesarias.
- 3. Cada Estado miembro adoptará las medidas para asegurar y coordinar de manera eficaz la vigilancia sanitaria de la población, fijará el ritmo de las evaluaciones y adoptará las medidas necesarias para que los grupos de referencia de la población sean identificados teniendo en cuenta la transmisión efectiva de la radiactividad. En caso necesario, estas medidas podrán ser adoptadas por un Estado miembro conjuntamente con otros Estados miembros.
- 4. Cada Estado miembro preverá, para el caso en que se produzca un accidente:
- a) niveles de intervención, así como las medidas que tomarán las autoridades competentes y las modali-

- dades de vigilancia con respecto a grupos de población que puedan recibir una dosis superior a los límites de dosis fijados en el artículo 12;
- b) los medios de intervención personal y material necesarios para la salvaguardia y mantenimiento de la salud de la población. En caso necesario, dichas medidas podrán ser adoptadas por un Estado miembro conjuntamente con otros Estados miembros.
- 5. Todo accidente que implique una exposición de la población deberá ser notificado urgentemente a los Estados miembros vecinos y a la Comisión, cuando las circunstancias así lo exijan.

Artículo 46

1. Los estados miembros estarán autorizados para no adoptar las medidas previstas en el apartado 1 del artículo 40 de la Directiva 76/579/Euratom, modificada por la Directiva 79/343/Euratom (1).

Los Estados miembros que se acojan a dicha autorización, adoptarán las medidas necesarias para cumplir la presente Directiva en un plazo de treinta meses a partir del 3 de junio de 1980.

Los Estados miembros que no se acojan a dicha autorización, adoptarán las medidas necesarias para cumplir la presente Directiva en un plazo de cuatro años a partir del 3 de junio de 1980.

 Los Estados miembros comunicarán a la Comisión las disposiciones adoptadas en aplicación de la presente Directiva.

Articulo 47

Los destinatarios de la presente Directiva serán los Estados miembros.

Hecho en Bruselas, el 15 de julio de 1980.

Por el Consejo El Presidente J. SANTER

ANEXO I

1. Valores de las actividades que no deberán sobrepasarse, de conformidad con la letra a) del artículo 4, para los radionucleidos (1):

Nucleidos de muy alta radiotoxicidad: 5.10^3 B_q; 1,4.10⁻⁷ Ci (grupo 1), Nucleidos de alta radiotoxicidad: 5.10⁴ B_q; 1,4.10⁻⁶ Ci (grupo 2), 5.10⁵ B_q; 1,4.10⁻⁵ Ci (grupo 3), Nucleidos de radiotoxicidad moderada: Nucleidos de débil radiotoxicidad: 5.106 B_q; 1,4.10⁻⁴ Ci (grupo 4).

- 2. Los principales nucleidos radiactivos se clasificarán como sigue, según su radiactividad relativa.
 - a) Muy alta radiotoxicidad (grupo 1):

²¹⁰ Pb	²¹⁰ Po	²²³ ₈₈ Ra	$^{225}_{88}$ Ra	$^{226}_{88}$ Ra	²²⁸ ₈₈ Ra	²²⁷ ₈₉ Ac	²²⁷ Th
²²⁸ Th	²²⁹ Th	²³⁰ Th	²³¹ Pa	$^{230}_{92}U$	$^{232}_{92}U$	²³³ U	²³⁴ U
²³⁷ ₉₃ Np	²³⁶ Pu	²³⁸ Pu	²³⁹ Pu	²⁴⁰ ₉₄ Pu	²⁴¹ Pu	²⁴² Pu	²⁴¹ ₉₅ Am
^{242m} ₉₅ Am	²⁴³ ₉₅ Am	²⁴⁰ ₉₆ Cm	²⁴² Cm	²⁴³ Cm	²⁴⁴ Cm	²⁴⁵ Cm	²⁴⁶ Cm
²⁴⁷ ₉₆ Cm	²⁴⁸ Cm	²⁴⁸ ₉₈ Cf	²⁴⁹ Cf	²⁵⁰ Cf	²⁵¹ Cf	²⁵² Cf	²⁵⁴ Cf
²⁵⁴ Es	²⁵⁵ Es						70

Alta radiotoxicidad (grupo 2):

²² Na	36CI	45 20 Ca	46Sc	60 27 Co	%Sr 38	91 Y	$^{93}_{40}$ Zr
94Nb	¹⁰⁶ Ru	110m Ag	$^{115m}_{48}Cd$	114m In	¹²⁴ Sb	¹²⁵ Sb	1241
125 ₅₃ 1	¹²⁶ ₅₃ I	¹³¹ ₅₃ I	¹³⁴ Cs	¹⁴⁰ Ba	¹⁴⁴ Ce	152 63 Eu(1	23
¹⁵⁴ Eu	¹⁶⁰ ТЪ	¹⁷⁰ Tm	¹⁸¹ Hf	¹⁸² Ta	192 77 Ir	²⁰⁴ T1	²¹² Pb
²⁰⁷ ₈₃ Bi	²⁰¹ ₈₃ Bi	²¹¹ ₈₅ At	²²⁴ ₈₈ Ra	²²⁸ ₈₉ Ac	²³² Th	₉₀ Th n	at (*)
²³⁰ Pa	²³⁶ U	²⁴⁴ Pu	²⁴² ₉₅ Am	²⁴¹ Cm	²⁴⁹ ₉₇ Bk	²⁴⁶ Cf	²⁵³ Cf
²⁵³ Es	254m Es	²⁵⁵ Fm	²⁵⁶ Fm			70	78

c) Radiotoxicidad moderada (grupo 3):

₹Be	14C	¹⁸ F	²⁴ Na	31Si	15 32 P	33 P	35S
38CI	4! Ar	42 K	43 K	⁴⁷ ₂₀ Ca	47Sc	48Sc	48V
51 21	52Mn	54Mn	52 ₂₆ Fe	55 ₂₆ Fe	⁵⁹ Fe	55Co	56Co
57Co	58Co	63 Ni	65 Ni	64 29 C u	65 30 Zn	^{69m} Zn	⁷² Ga
⁷³ ₃₃ As	74 33 As	⁷⁶ ₃₃ As	⁷⁷ ₃₃ As	⁷⁵ Se	82 35Br	⁷⁴ Kr	⁷⁷ Kr
87 36 Kr	88 36 Kr	86 37 R b	83 38	85 38Sг 89Sг	- 91Sr	92 38	
90 Y	92 39	93 39	$_{40}^{86}$ Zr	$_{40}^{88}$ Zr	$_{40}^{89}$ Zr	95 40 Zr	97Zr
90Nb	93m Nb	95 Nb	95m Nb	%Nb	90Mo	93 4 2	99 42 Mo
%Tc	97mTc	97Tc	99Tc	⁹⁷ Ru	¹⁰³ Ru	¹⁰⁵ Ru	105Rh
¹⁰³ Pd	108Pd	¹⁰⁵ Ag	¹¹¹ ₄₇ Ag	¹⁰⁹ Cd	¹¹⁵ Cd	114mIn	113 50 Sn
¹²⁵ Sn	¹²² Sb	¹²¹ Te	^{121m} Te	^{123m} Te	^{125m} Te	^{127m} Te	^{129m} Te
¹³¹ Te	^{131m} Te	¹³² Te	^{133m} Te	¹³⁴ Te	120 I	123 53	130 I

La lista alfabética de los elementos figura al final del presente Anexo.

Un bequerelio de torio natural corresponde a la desintegración alfa por segundo (dps) (0,5 dps de Th^{-232} y 0,5 dps de Th^{-228}). Un curio de torio natural corresponde a 3,7 \times 10¹⁰ desintegraciones alfa por segundo (1,85 \times 10¹⁰ dps de Th^{-232} y 1,85 \times 10¹⁰ dps de Th^{-228}).

	132 I	132m I	133 I	135 53 I	¹³⁵ Xe	132Cs	¹³⁶ Cs	¹³⁷ Cs
	53 t 131 Ba	53 1 140 La	53* 134Ce	135Ce	137mCe	¹³⁹ Ce	141Ce	143Ce
					58 CC 147 Pm	149Pm	151Sm	153Sm
	¹⁴² Pr	¹⁴³ ₅₉ Pr	147Nd	149 Nd				
	^{152m} Eu(9)	h)	¹⁵⁵ ₆₃ Eu	¹⁵³ Gd	¹⁵⁹ Gd	¹⁶⁵ Dy	¹⁶⁶ Dy	¹⁶⁶ Ho
	¹⁶⁹ Er	¹⁷¹ Er	¹⁷¹ Tm	¹⁷⁵ Yb	¹⁷⁷ Lu	¹⁸¹ W	185W	¹⁸⁷ W
	¹⁸³ Re	¹⁸⁶ ₇₅ Re	¹⁸⁸ Re	¹⁸⁵ Os	¹⁹¹ Os	¹⁹³ Os	¹⁹⁰ Ir	¹⁹⁴ 1r
	¹⁹¹ ₇₈ Pt	¹⁹³ Pt	¹⁹⁷ Pt	¹⁹⁶ Au	¹⁹⁸ Au	¹⁹⁹ Au	¹⁹⁷ Hg	^{197m} Hg
	²⁰³ ₈₀ Hg	²⁰⁰ Tl	²⁰¹ Tl	²⁰² T1	²⁰³ ₈₂ Pb	²⁰⁶ ₈₃ Bi	²¹² Bi	$^{220}_{86}$ Rn
	²²² ₈₆ Rn	²²⁶ Th	²³¹ Th	²³⁴ Th	²³³ Pa	$^{231}_{92}U$	$^{237}_{92}U$	²⁴⁰ ₉₂ Rn
	²⁴⁰ U+	²⁴⁰ ₉₃ Np	²³⁹ Np ²⁹	⁴ Pu	²³⁷ ₉₄ Pu	²⁴⁵ Pu	²³⁸ ₉₅ Am	²⁴⁰ ₉₅ Am
	^{244m} ₉₅ Am	²⁴⁴ ₉₅ Am	²³⁸ Cm	²⁵⁰ ₉₇ Bk	²⁴⁴ Cf	²⁵⁴ Fm		
d)	Débil ra	diotoxicid	lad (grupo	4):				
	}H	¹⁵ 8O	³⁷ ₁₈ Ar	51 Mn	$\frac{52m}{25}Mn$	$_{25}^{53}$ Mn	56Mn	58mCo
	60mCo	61 27	62mCo	59 Ni	$_{30}^{69}$ Zn	⁷¹ Ge	⁷⁶ Kr	⁷⁹ Kr
	81 36 Kr	83mKr	85mKr	85 36 Kr	$^{80}_{38}$ Sr	81Sr	85mSr	87mSr
	91mY	88 Nb	89(66m) N	b 89(122m) N	Nb 97 Nb	98 Nb		
	93m Mo	¹⁰¹ ₄₂ Mo	^{96m} Tc	99mTc	$^{103m}_{45}Rh$	^{113m} in	116Te	¹²³ Te
	¹²⁷ Te	¹²⁹ Te	¹³³ Te	120m [121 53	128 I	¹²⁹ ₅₃ I	¹³⁴ 1
	^{131m} Xe	¹³³ Xe	¹²⁵ Cs	¹²⁷ Cs	¹²⁹ Cs	¹³⁰ Cs	¹³¹ Cs	134mCs
	¹³⁵ Cs	^{135m} Cs	¹³⁸ Cs	¹³⁷ Ce	^{191m} Os	^{193m} Pt	^{197m} Pt	²⁰³ ₈₄ Po
	²⁰⁵ ₈₄ Po	²⁰⁷ ₈₄ Po	²²⁷ ₈₈ Ra	²³⁵ U	²³⁸ U	²³⁹ U	₉₂ U na	t (*)
	²³⁵ ₉₄ Pu	²⁴³ ₉₄ Pu	²³⁷ ₉₅ Am	$^{239}_{95}$ Am	²⁴⁵ ₉₅ Am	²⁴⁶ ₉₅ Am	²⁴⁶ Am	²⁴⁹ Cm

- 3. Para los nucleidos In-115, Nd-144, Rb-87, Re-187 y Sm-147, el régimen de declaración y autorización previa no se podrá aplicar, independientemente de las cantidades utilizadas.
- 4. En caso de mezcla de radionucleidos distintos del Th-nat y U-nat, que pertenezcan a grupos de radiotoxicidad diferentes, el régimen de declaración y autorización prevista no se podrá aplicar si la suma de las razones entre la actividad de cada uno de los radionucleidos y el límite fijado en el apartado I para el grupo que pertenezca fuere inferior o igual a 1.
- 5. Para las pinturas radioluminiscentes, el régimen de declaración y autorización previa no se podrá aplicar si la actividad global en substancias radiactivas no sobrepasare 2.109 Bq de Tritio (5,4.10⁻² Ci), 1.108 Bq de ¹⁴⁷Pm (2,7.10^{-3Ci)} ó 5.105 Bq de ²²⁶Ra (1,4.10⁻⁵ Ci) y si dichas pinturas fueren guardadas o utilizadas para la fabricación o reparación de los instrumentos y aparatos mencionados en la letra c) del artículo 4.
- 6. Los radionucleidos que no figuren en el presente Anexo serán atribuidos por la autoridad competente a uno de los grupos de toxicidad siempre que sea necesario.
- 7. Para los manguitos de gas impregnados de Torio, el régimen de declaración y de autorización previa no se podrá aplicar, salvo en lo referente a su fabricación.

^(*) Un bequerelio de uranio natural corresponde a 1 desintegración alfa por segundo (0,489 dps de U^{-238} , 0,489 dps de U^{-234} y 0,022 dps de U^{-235}). Un curio de uranio natural corresponde a 3,7 \times 10½ desintegraciones alfa por segundo (1,81 \times 10½ dps de U^{-238} , 1.81 \times 10½ dps de U^{-234} y 8,31 \times 10½ dps de U^{-235}).

Lista alfabética de los elementos

Simbolo	Número atómico	Nombre	Símbolo	Número atómico	Nombre
Ac	89	Actinio	Mn	25	Manganeso
Ag	. 47	Plata	Mo	42	Molibdeno
Al	13	Aluminio			
Am	95	Americio	N	7	Nitrógeno
Ar	18	Argón	Na	11	Sodio
As	33	Arsénico	Nb	41	Niobio
At	85	Astato	Nd	60	Neodimio
Au	79	Oro	Ne	10	
Λu	19	Oro	Ni Ni		Neón
_				28	Níquel
В	5	Boro	No	102	Nobelio
Ba	56	Bario	Np	93	Neptunio
Be	4	Berilio			
Bi	83	Bismuto	O	8	Oxígeno
Bk	97	Berquelio	Os	76	Osmio
Br	35	Bromo	03	70	Osililo
С	6	Carbono	P	15	Fósforo
Ca	20		Pa	91	Protactinio
∟a Cd		Calcio	Pb	82	Plomo
	48	Cadmio	Pd	46	Paladio
Ce	58	Cerio	Pm	61	Prometio
Cf	98	Californio	Po	84	Polonio
CI	17	Cloro	Рт	59	Praseodimio
Cm	96	Curio	Pt	78	Platino
Co	27	Cobalto	Pu	94	Plutonio
Cr	24	Cromo		/ 4	i iutomo
Cs	55	Cesio	D	0.0	
Cu	29	Cobre	Ra	88	Radio
	47	Coole	Rb	37	Rubidio
			Re	75	Renio
Эу	66	Disprosio	Rh	45	Rudio
			Rn	86	Radon
Ēr	68	Erbio	Ru	44	Rutenio
Es	99	Einstenio		7-7	Nutchilu
.s Eu	63		c	17	A 6
. u	0.5	Europio	S	16	Azufre
			Sb	51	Antimonio
7	9	Flúor	SC	21	Escandio
e	26	Hierro	Se	34	Selenio
m	100	Fermio	Si	14	Silicio
r	87	Francio	Sm	62	Samario
•	٠,	1 IUIICIO	Sn	50	
• _	21	a ::	Sr		Estaño
ja	31	Galio	31	38	Estroncio
id	64	Gadolinio	_		
ie	32	Germanio	Ta	73	Tantalio
			Tb	65	Terbio
l	1	Hidrógeno	Tc	43	Tecnecio
le	2	Helio	Te	52	Telurio
f	72	Hafnio	Th	90	Torio
		•	Ti	22	
lg	80	Mercurio	TI		Titanio
lo	67	Holmio	II Tm	81 69	Talio Tulio
	53	Yodo			
1	49	Indio	U	92	Uranio
	77	Iridio			
			V	23	Vanadio
	19	Potasio			
г	36	Cripton	w	74	Volframio
a	57	Lantano	Xe	54	Xenon
i	3	Litio			
			Y	20	T. *
נו	71	Lutecio		39	Itrio
			Yb	70	
d	101	Mendelevio	Zn	30	Cinc
g	12	Magnesio	Z r	40	Circonio

ANEXO II

A. Relación entre el factor de calidad Q y transferencia lineal de energía L α

L∞ en el agua (K eV/µm)	Q (*)		
3,5 ó menos	1		
7	2		
23	5		
53	10		
175 ó más	20		

^(*) Los valores intermedios se obtienen a partir de la curva de la figura 1.

B. Valores del factor de calidad efectivo Q.

Los valores del factor de calidad efectivo Q dependen de las condiciones de exposición así como del tipo de radiación incidente y de su energía. Los valores del cuadro siguiente se utilizarán en caso de exposición externa homogénea del cuerpo entero. Los mismos valores valen generalmente para las otras condiciones de exposición. Si fueran necesarios otros valores, se deberán calcular partiendo de los valores Q indicados en el punto A y a partir de las curvas de la figura 2.

Radiaciones	Q
Radiaciones X, μ, β , electrones y positrones	1
Neutrones de energía desconocida	10

C. Factores de conversión (tasa de fluencia de los neutrones en cm⁻² s ⁻¹ que corresponden a una tasa de dosis equivalente de 1 μ Sv h ⁻¹ y 1 mrem h ⁻¹ y factor de calidad Q en función de la energía de los neutrones (¹). (Dichos factores se podrán igualmente comparar a la tasa de fluencia de neutrones y a la tasa de índice de dosis equivalente).

_ , , , , ,	Factor de cor	nversión (²) (³)	Factor de calidad
Energía de los neutrones MeV	(cm ⁻² s ⁻¹) por (µSv h ⁻¹)	(cm ⁻² s ⁻¹) por (mrem h ⁻¹)	efectivo Q (²) (³)
2,5 · 10 ⁸	26	260	2,3
(neutrones térmicos)			
$1 \cdot 10^{-7}$	24	240	2 2 2 2 2 2 2 3,3
1 · 10-6	22	220	2
1 · 10-5	23	230	2
1 · 10-4	24	240	2
1 · 10-3	27	270	2
1 · 10-2	28	280	. 2
2 · 10-2	17	170	3,3
5 · 10-2	8,5	85	5,7
1 · 10-1	4,8	48	7,4
5 · 10-1	1,4	14	11
1	0,85	8,5	10,6
ż	0,70	7,0	9,3
2 5	0,68	6,8	7,8
10	0,68	6,8	6,8
20	0,65	6,5	6,0
50	0,61	6,1	5,0
$1 \cdot 10^2$	0,56	5,6	4,4
$2 \cdot 10^{2}$	0,51	5,6 5,1	3,8
$5 \cdot 10^{2}$	0,36	3,6	3,2
$1 \cdot 10^{3}$	0,22	2,2	2,8
$2 \cdot 10^{3}$	0,16	1,6	2,6
$\frac{2}{3} \cdot 10^{3}$	0,14	1,4	2,5

⁽¹⁾ Para haces gruesos unidireccionales de protones monoenergéticos con incidencia normal.

⁽²⁾ En el punto en que la tasa de dosis equivalente es máxima.

⁽³⁾ Los valores intermedios se obtienen a partir de las curvas de las figuras 3 y 4.

D. Factores de conversión (tasa de fluencia de los protones en cm⁻² s⁻¹ que corresponde a una tasa de dosis equivalente de 1 μ Sv h⁻¹ y l mrem h⁻¹) y factor de calidad efectivo Q en función de la energía de los protones (1). (Dichos factores se podrán utilizar igualmente para comparar la tasa de fluencia de los protones y la tasa del índice de dosis equivalente).

Energía de los neutrones	Factor de cor	Factor de calidad	
MeV	(cm ⁻² s ⁻¹) por (μSv h ⁻¹)	(cm ⁻² s ⁻¹) por (mrem h ⁻¹)	efectivo Q (2) (3)
2 à 60	0,040	0,40	1,4
$1 \cdot 10^{2}$	0,041	0,41	1,4
$1,5 \cdot 10^2$	0,042	0,42	1,4
$2 \cdot 10^2$	0,043	0,43	1,4
$2,5 \cdot 10^{2}$	0,21	2,1	1,4
$3 \cdot 10^{2}$	0,24	2,4	1,5
$4 \cdot 10^2$	0,25	2,5	1,6
$6 \cdot 10^{2}$	0,24	2,4	1,7
$8 \cdot 10^{2}$	0,22	2,2	1,8
$1 \cdot 10^{3}$	0,20	2,0	1,9
$1.5 \cdot 10^3$	0,16	1,6	2,0
$2 \cdot 10^{3}$	0,14	1,4	2,1
$3 \cdot 10^3$	0,11	1,1	2,2

(1) Para haces gruesos unidireccionales de protones monoenergéticos con incidencia normal

(2) En el punto en que la tasa de dosis equivalente es máxima.

(3) Los valores intermedios se obtendrán a partir de la curva de la figura 5.

E. Modalidades de evaluación de la dosis efectiva

La dosis efectiva es igual a

 $\frac{\Sigma}{T} W_T H_T$

en donde H_T es la dosis equivalente media en el órgano o el tejido T,

W_T es el factor de ponderación relativo en el órgano o el tejido T.

Los valores de los factores de ponderación se indican a continuación:

gonadas:	0,25
senos:	0,15,
médula ósea roja:	0,12,
pulmón:	0,12,
tiroides:	0,03,
huesos (superficies óseas):	0,03,
resto del organismo (1):	0,30.

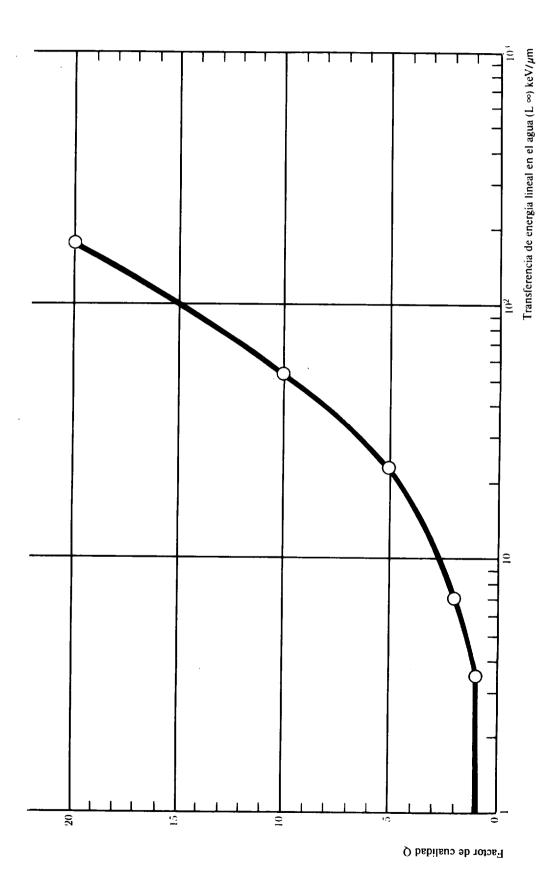
F. Se considerará que se respetan los límites de dosis determinados en los artículos 8, 9 y 12 si el índice de dosis equivalente profundo no sobrepasa el límite de dosis fijado para la exposición global y si el índice de dosis equivalente superficial no sobrepasa el límite de dosis determinado para el piel

⁽¹) Para determinar la contribución del resto del organismo, se valorará la dosis media para los cinco órganos o tejidos más expuestos del resto del organismo (con exclusión del cristalino, de la piel, de las manos, antebrazos, pies y tobillos) utilizando para cada uno de ellos un factor de ponderación de 0,06. Se ignorará la irradiación de los demás organos y tejidos.

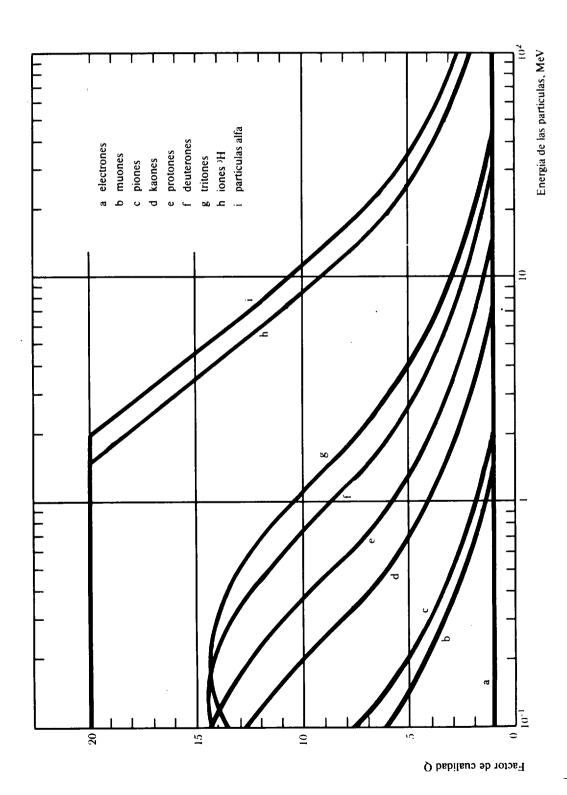
G. En caso de exposiciones externas o internas asociadas, se considerará que se respetan los límites determinados en los artículos 8, 9 y 12 si se cumplen las dos condiciones siguientes:

a)
$$\frac{H_{l,p}}{H_L} + \frac{\Sigma}{j} \sum_{l} \frac{lj}{lj,L} \le 1$$

en donde:

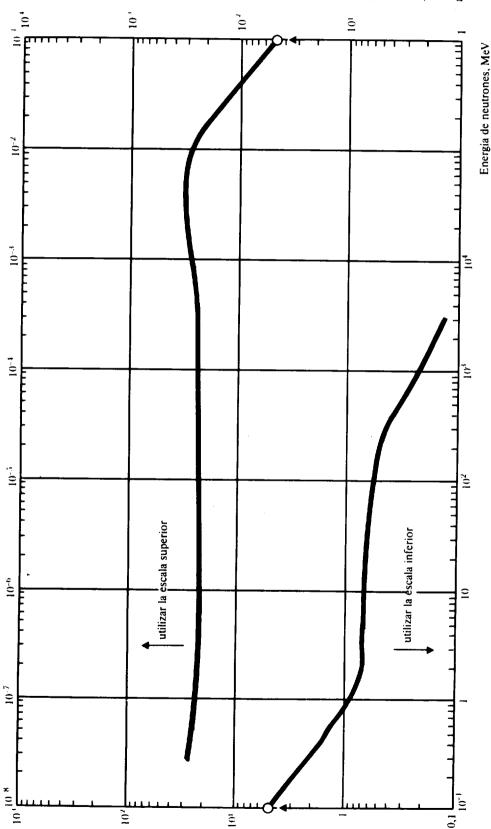

H_{1,p} es el índice de dosis equivalente profunda anual,

H_L es el límite de dosis anual para la exposición global,

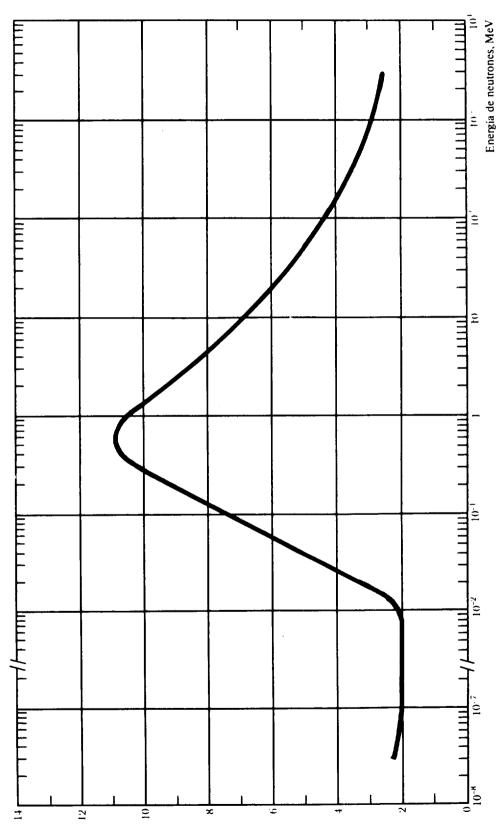

I_i es la incorporación anual de radionucleidos j,

I_{i.L} es el límite de incorporación anual de dicho radionucleido;

b) se respetarán los límites de dosis fijados, según el caso, en la letra b) del artículo 9 y en la letra b) del apartado 3 del artículo 12.

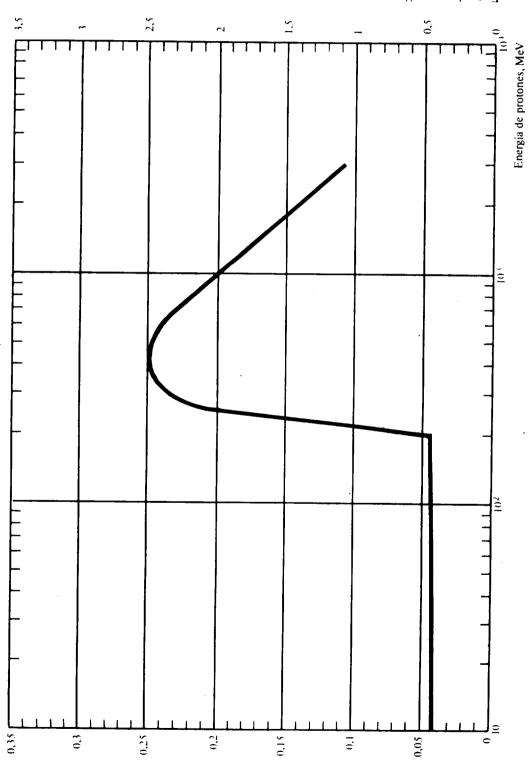

Variación del factor de calidad en función de la transferencia lineal de energía en el agua $(L\,\infty)$

Variación del factor de cualidad de las particulas cargadas, en función de su energía en el caso de una exposición externa


Figura 2

Factores de conversión de la tasa de fluencia de neutrones en tasa de dosis equivalente

Factor de conversión, neutrones (cm-2 s-1) por ($\mu S \nu \ h^{-1}$)



Factores de calidad efectivos de los neutrones

Figura 4

Pactor de calidad efectivo \overline{Q}

Factor de conversión, protones (cm-2 s-1) por (µSvh-1)

Factores de conversión de la tasa de fluencia de protones en tasa de dosis equivalente

Factor de conversión, protones $(cm^{-2} \ s^{-1})$ por $(mrem \ h^{-1})$

ANEXO III

1. Límites de incorporación anual por inhalación y límites derivados de concentración de radionucleidos en el aire inhalado para los trabajadores expuestos y límites de incorporación anual por inahalación y por ingestión para el público en general.

Los valores que figuran en los cuadros la y 1b corresponden a los límites de dosis anual fijados en los artículos 8, 9 y 12 para los trabajadores expuestos y el público en general.

Los valores que figuran en el cuadro 2 son los fijados en la Directiva 76/579/Euratom. Los valores no corresponden exactamente a los límites de dosis anual determinados en los artículos 8, 9 y 12 pero, con carácter provisional, la observancia de dichos valores se considerará como garantía del cumplimiento de los límites de dosis anual determinados en los artículos 8, 9 y 12.

Los valores de los cuadros 1 y 2 se refieren a los adultos. En el caso de niños, se deberá tener en cuenta las características anatómicas y fisiológicas que pudieren requerir modificaciones de dichos valores.

2. Mezcla de radionucleidos:

- a) Cuando la composición de mezcla no se conozca y se pueda excluir con exatitud la presencia de algunos radionucleidos, se utilizará el límite más bajo de los fijados para los radionucleidos que puedan estar presentes;
- cuando la composición detallada de mezcla no se conozca y hayan sido identificados los radionucleidos de dicha mezcla, se utilizará el límite más bajo de los determinados para los radionucleidos presentes;
- si predominare la concentración y la toxicidad de uno de los radionucleidos de la mezcla, los límites de incorporación anual deberán utilizar serán los dados para dicho radionucleido en el apartado 1;
- d) en presencia de una mezla de radionucleidos de composición conocida, se deberá reunir una de las condiciones siguientes:

$$\begin{split} \sum_{l} \frac{\Sigma}{j} & \frac{I_{j}}{I_{j,L}} < 1 \\ \sum_{l} \frac{\Sigma}{j} & \frac{C_{j}}{C_{j,L}} < 1 \end{split}$$

siendo I_i la incorporación anual de radionucleido j; $I_{i,i}$ el límite de incorporación anual de dicho radionucleido; C_i la concentración media anual en el aire del radionucleido j y $C_{i,i}$ el límite derivado de concentración de dicho radionucleido en el laire.

CUADRO 1 a
(Actividades expresadas en Bequerelios)

		Trabajadore	es expuestos	Público en general		
Radionucleidos	Forma (**)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
3 ₁ H	Eau	3 · 109	8 · 105	3 · 108	3 · 108	
3 ₁ H	Elément		2 · 1010			
³² ₁₅ P	D W	3 · 10 ⁷ 1 · 10 ⁷	1 · 10 ⁴ 6 · 10 ³	3 · 106 1 · 106	2 · 106	
33 ₁₅ P	D W	3 · 10 ⁸ 1 · 10 ⁸	1 · 10 ⁵ 4 · 10 ⁴	3 · 10 ⁷ 1 · 10 ⁷	2 · 107	
51 ₂₅ Mn	D W	2 · 10 ⁹ 2 · 10 ⁹	8 · 10 ⁵ 9 · 10 ⁵	2 · 108 2 · 108	7 · 107	
52 25 Mn	D W	4 · 10 ⁷ 3 · 10 ⁷	2 · 10 ⁴ 1 · 10 ⁴	4 · 106 3 · 106	3 · 106	
^{52m} Mn	D W	3 · 10 ⁹ 4 · 10 ⁹	1 · 106 2 · 106	3 · 10 ⁸ 4 · 10 ⁸	1 · 108	
⁵³ Mn	D W	5 · 10 ⁸ 4 · 10 ⁸	2 · 10 ⁵ 2 · 10 ⁵	5 · 10 ⁷ 4 · 10 ⁷	2 · 108	
S4 25Mn	D W	3 · 10 ⁷ 3 · 10 ⁷	1 · 10 ⁴ 1 · 10 ⁴	3 · 10 ⁶ 3 · 10 ⁶	7 · 106	
56 Mn	D W	6 · 10 ⁸	2 · 10 ⁵ 3 · 10 ⁵	6 · 10 ⁷ 8 · 10 ⁷	2 · 10 ⁷	

(*) (**) (***) Ver notas a pie de página al final de este cuadro.

		Traba	Público en general			
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq.m ⁻³	Bq	Bq	
1	2	3	4	5	6	
5 _{Co}	w	1 · 108	4 · 104	1 · 107		
S ₇ Co	Y	1 · 108	4 · 104	1 · 10		
					a) 4 · 10 ⁶ b) 6 · 10 ⁶	
66 7Co	w	1 · 107	5 · 103	1 · 106		
700	Y	7 · 106	3 103	7 · 105		
		, 13			2 · 106	
77Co	w	1 · 10ª	4 · 104	1 · 107		
	Y	2 · 107	1 · 104	2 · 106		
					a) 3 · 10 ⁷ b) 2 · 10 ⁷	
					0)2 10	
⁵⁸ Co	w	4 · 107	2 · 104	4 · 106		
2/	Y	3 · 107	1 · 104	3 · 106		
					a) 6 · 106 b) 5 · 106	
		.			6) 3 · 10	
^{58m} Co	w	3 · 109	1 · 106	3 · 108		
27 60	Y	2 · 109	1 · 106	2 · 108		
					2 · 10s	
	w	6 · 106	3 · 103	6 · 105		
27	Y	1 · 106	5 · 102	1 · 105		
					a) 2 · 106 b) 7 · 105	
					0) / 10	
^{60т} Со	w	1 · 1011	6 · 107	1 · 1010		
21	Y	1 · 1011	4 · 107	1 · 1010		
				·	4 · 109	
61 27 Co	w	2 · 109	1 · 106	2 · 10 ⁸		
- -	Y	2 · 109	9 · 10 ^s	2 · 108		
					a) 7 · 10 ⁷ b) 8 · 10 ⁷	
62m 27 Co	w	6 · 109	3 · 106	6 · 108		
••	Y	6 · 109	2 · 106	6 · 10 ⁸		
					1 · 108	
⁷⁴ Кг			1 · 105			
76Kr			3 · 105			

		Trabajadoi	es expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual Forma (*) por inhalación	Límites derivados de concentración en el aire para una exposición de	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	2 000 h/año Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
77 36 K r			1 · 105			
⁷⁹ ₃₆ Kr			6 · 105			
81 36 Kr			2 · 107			
83m 36 Kr			9 · 108			
85m 36 Kr			8 · 105			
85 36Kr			5 · 106	11		
87 36Kr			2 · 105			
88 36Kr			7 · 104			
80 38 Sr	D	8 · 1010	3 · 107	8 · 109		
	Y	9 · 1010	4 · 107	9 · 109	4 · 109	
81 38 Sr	D Y	3 · 10 ⁹ 3 · 10 ⁹	1 · 106 .	3 · 108		
	1	3 · 10	1 · 106	3 · 108	9 · 107	
83 38 Sr	D Y	3 · 108	1 · 105	3 · 107	,	
		1 · 10*	5 · 10*	1 · 107	a) 1 · 10 ⁷ b) 8 · 10 ⁶	
^{85m} Sr	D Y	2 · 1010	9 · 106	2 · 109		
		3 · 1010	1 · 107	3 · 109	8 · 108	
85 38 Sr	D Y	1 · 108	4 · 104	1 · 107		
		6 · 107	2 · 104	6 · 10	a) 9 · 106 b) 1 · 107	
^{37m} Sr	D	5 · 109	2 · 106	5 · 108	- ·	
	Y	6 · 10°	2 · 106	6 · 108	a) 2 · 10 ⁸ b) 1 · 10 ⁸	

		Trabajadore	Trabajadores expuestos			
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
9 Sr	D	3 · 107	1 · 104	3 · 106	ļ	
•	Y	5 · 10*	2 · 10³	5 · 105	2 · 106	
₀₈ Sг	D	7 · 105	3 · 102	7 · 104		
	Y	1 · 105	6 · 101	1 · 104	a) 1 · 10 ⁵ b) 2 · 10 ⁶	
PlSr	D Y	2 · 10 ⁸ 1 · 10 ⁸	9 · 10 ⁴ 5 · 10 ⁴	2 · 10 ⁷ 1 · 10 ⁷	a) 8 · 106	
					b) 6 · 106	
92 38	D	3 · 10 ⁸ 2 · 10 ⁸	1 · 10 ⁵ 1 · 10 ⁵	3 · 10 ⁷ 2 · 10 ⁷		
	Y	2 · 10	1 10	2 10	1 · 107	
⁸⁶ Zг	D	1 · 10 ⁸	6 · 10 ⁴ 4 · 10 ⁴	1 · 10 ⁷ 1 · 10 ⁷		
	W	9 · 107	4 · 104	9 · 106	5 · 106	
	D	8 · 106	3 · 10³	8 · 105		
	W	2 · 10 ⁷ 1 · 10 ⁷	7 · 10 ³ 5 · 10 ³	2 · 106 1 · 106		
	*				1 · 107	
89 40 Zr	D W	1 · 10 ⁸ 9 · 10 ⁷	5 · 10 ⁴ 4 · 10 ⁴	1 · 10 ⁷ 9 · 10 ⁶		
	Y	9 · 107	4 - 104	9 · 106	6 · 106	
93 ₄₀ Zr	D	2 · 105	1 · 102	2 · 104		
	W	9 · 105	4 · 102	9 · 10 ⁴ 2 · 10 ⁵		
	Y	2 · 106	9 · 10²	2 · 10	5 - 106	
95 ₄₀ Zr	D	5 · 106	2 · 103	5 · 105		
	W	1 · 107	6 · 10 ³	1 · 106 1 · 106		
	Y	1 · 107	4 · 10³	1 . 10	5 · 106	

			res expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	oración anual concentración en el aire anual por inhalación		Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
⁹⁷ ₄₀ Zr	D	7 · 107	3 · 104	7 · 106		
	w	5 · 10 ⁷	2 · 104	5 · 106		
	Y	5 · 10 ⁷	2 · 104	5 · 10 ⁶		
					2 · 104	
88 ₄₁ Nb	w	8 · 109	4 · 106	8 · 108		
	Y	8 · 109	3 · 106	8 · 108		
					2 · 108	
89Nb (66 min)	w	2 · 109	6 · 10 ⁵	2 · 10 ⁸		
(00 шіп)	Y	1 · 109	6 · 10 ⁵	1 · 108		
					4 · 109	
⁸⁹ Nb (122 min)	w	7 · 108	3 · 105	7 · 107		
(122 min)	Y	6 · 10 ⁸	2 · 105	6 · 10 ⁷		
					2 · 107	
⁹⁰ Nb	w	1 · 108	4 · 104	1 · 109		
	Y	9 · 107	4 104	9 · 106		
					4 · 106	
^{93m} Nb	w	5 · 107	2 · 104	5 · 106		
	Y	6 · 106	3 · 103	6 · 105		
					3 · 107	
MNb	w	7 · 106	3 · 10³	7 · 105		
	Y	6 · 10 ⁵	2 · 102	6 · 104		
					4 · 106	
⁵ Nb	w	5 · 107	2 · 104	5 · 106		
	Y	4 · 107	2 · 104	4 · 106		
					8 · 106	
^{5m} Nb	w	1 · 108	4 - 104	1 · 107		
	Y	8 · 107	3 · 104	8 · 106		
					8 · 106	
⁶ Nb	w	1 · 108	4 · 104	1 · 107		
	Y	9 · 107	4 · 104	9 · 106		
					4 · 106	
nb	w	3 · 109	1 · 106	3 · 10 ⁸		
1	Y	3 · 109	1 · 106	3 · 108		
		l.	1		8 · 10 ⁷	

		Trabajado	res expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
⁸ Nb	w	2 · 109	8 · 105	2 · 108		
11.0	Y	2 109	8 · 105	2 · 108	5 · 10 ⁷	
0 2 Mo	D	3 · 108	1 - 105	3 · 107		
21410	Y	2 · 108	7 · 104	2 · 107		
					a) 2 · 10 ⁷ b) 7 · 10 4	
³ Mo	D	2 · 108	8 · 104	2 · 107		
21/10	Y	7 · 106	3 · 103	7 · 10 ⁵		
					a) 1 · 10 ⁷ b) 9 · 10 ⁷	
^{93m} Mo	D	7 - 108	3 · 105	7 · 109		
12 MO	Y	5 · 108	2 · 105	5 · 107		
					a) 4 · 10 ⁷	
					b) 2 · 10 ⁷	
99 12 Mo	D	1 · 108	4 · 104	1 · 107		
421410	Y	5 · 107	2 · 104	5 · 106		
					a) 6 · 106 b) 4 · 10 4	
	D	5 · 109	2 · 106	5 · 10 ⁸		
421410	Y	6 · 109	2 · 106	6 · 108		
					2 · 108	
¹¹⁶ 57e	D	8 · 108	3 · 105	8 · 107		
5216	W	1 · 109	5 · 105	1 · 108		
					3 · 107	
¹²¹ Te	D	2 · 108	6 · 104	2 · 107		
32	w	1 · 108	5 · 104	1 · 107		
					1 · 107	
^{121m} Te	D	7 · 106	3 · 10³	7 · 109		
52 10	w	2 · 107	6 · 103	2 · 106		
					2 · 106	
123 ₅₂ Te	D	7 · 106	3 · 103	7 · 105		
32	w	2 · 107	7 · 10³	2 · 106		
					2 · 106	

	Trabajadores expuestos		Público en general		
Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
<u></u>	Bq	Bq m ⁻³	Bq	Bq	
2	3	4	5	6	
D W	8 · 10 ⁶ 2 · 10 ⁷	3 · 10 ³ 8 · 10 ⁵	8 · 10 ⁵ 2 · 10 ⁶		
				2 · 106	
D W	2 · 10 ⁷ 3 · 10 ⁷	6 · 10³ 1 · 10⁴	2 · 10 ⁶ 3 · 10 ⁶		
				4 · 106	
D	8 · 108	3 · 105	8 · 107		
"	9 · 10s	3 · 105	6 · 10 ⁷	3 · 107	
D W	1 · 10 ⁷ 9 · 10 ⁶	4 · 10 ³ 4 · 10 ³	1 · 106 9 · 105		
		0		2 · 106	
D	2 · 109	1 · 106	2 · 108		
"	3 · 109	1 · 106	3 · 108	1 · 108	
D w	2 · 10 ⁷	1 · 104	2 · 106		
"	9 · 10	4 · 10	9 · 10 ³	2 · 106	
D W	2 · 108	8 · 104	2 · 107		
•	3 · 10s	1 · 10s	3 · 107	2 · 107	
D	2 · 107	1 - 104	2 · 106		
w	3 · 107	1 · 104	3 · 106	2 · 106	
D	8 · 106	4 · 103	8 · 105		
W	7 · 106	3 · 10³	7 · 105	2 · 105	
D	7 · 108	3 · 105	7 · 107		
w	1 · 109	5 · 105	1 - 108	5 · 107	
D	1 · 108	6 · 104	1 · 107		
w	2 · 108	1 · 105	2 · 107	1 · 107	
	D W D W D W D W D W D W D W D W D W D W	Forma (*)	Forma (*) Incorporación anual por inhalación Concentración en el aire para una exposición de 2 000 h/año Bq	Forma (*)	

Radionucleidos		Trabajadores expuestos		Público en general		
	Forma (*)	incorporación anual	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
34 52 Te	D	1 · 108	5 · 104	1 · 107		
5 2	w	3 · 108	1 · 105	3 · 107	2 · 107	
²⁰ 1	D	3 · 108	1 · 105	3 - 107	1 · 107	
^{20m} I	D	8 · 108	3 · 105	8 · 107	4 · 107	
21 ₅₃ I	D	7 · 10 ⁸	3 · 105	7 · 109	4 · 10°	
¹²³ 1	D	2 · 108	9 · 104	2 · 107	1 · 107	
124 ₅₃ I	D	3 · 106	1 · 10³	3 · 105	2 · 105	
125 ₅₃ I	D	2 · 106	1 · 103	2 · 105	1 · 105	
126 ₅₃ I	D	1 · 106	5 · 10²	1 · 105	8 - 104	
128 53	D	4 · 109	2 · 10	4 · 108	2 · 108	
129 53I	D	3 · 105	1 · 10²	3 · 104	2 · 104	
130 ₅₃ I	D	3 · 107	1 · 104	3 · 106	1 · 106	
131 ₅₃ I	D	2 · 106	7 · 10²	2 · 105	1 · 105	
132 ₅₃ [D	3 · 108	1 · 105	3 · 107	1 · 107	
132m 53	D	3 · 108	1 · 105	3 · 107	1 · 107	

		Trabajadores expuestos		Público en general		
Radionucleidos	Forma (*)	Forma (*) Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
133 ₅₃ I	D	1 · 107	4 · 103	1 · 106	5 · 10 ⁵	
134 53	D	2 · 109	7 · 105	2 · 108	8 · 107	
135 53I	D	6 · 107	2 · 104		6 · 10	
125 55Cs	D	5 · 109	2 · 106	5 · 10 ⁸	2 · 108	
¹²⁷ ₅₅ Cs	D	4 · 109	1 · 106	4 · 108	2 · 108	
¹²⁹ ₅₅ Cs	D	1 · 109	5 · 105	1 - 108	9 · 107	
¹³⁰ ₅₅ Cs	D	7 · 109	3 · 106	7 · 108	2 · 108	
¹³¹ ₅₅ Cs	D	1 · 109	5 · 105	1 · 108	8 · 107	
¹³² ₅₅ Cs	D	1 - 108	6 · 104	1 · 107	1 · 107	
134 ₅₅ Cs	D	4 · 106	2 · 10³	4 · 105	3 · 10 ⁵	
134m 55 Cs	D	5 · 109	2 · 106	5 · 10 ⁸	4 · 10 ⁶	
35 55 Cs	D	4 · 107	2 · 104	4 · 106	3 · 106	
^{35m} Cs	D	7 · 10°	3 · 106	7 · 108	4 · 108	
³⁶ Cs	D	2 · 107	1 · 10•	2 · 106	2 · 106	
³⁷ Cs	D	6 · 106	2 · 10³	6 · 105	4 · 105	

		Trabajadore	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Bq	Bq m ⁻³	Bq	Bq
1	2	3	4	5	6
38 ₅₅ Cs	D	2 · 109	9 · 105	2 · 108	7 · 10 ⁷
³⁴ Ce	W Y	3 · 10 ⁷ 2 · 10 ⁷	1 · 10 ⁴ 1 · 10 ⁴	3 · 106 2 · 106	2 · 106
¹³⁵ 58Ce	W Y	1 · 108 1 · 108	6 · 10 ⁴ 5 · 10 ⁴	1 · 10 ⁷ 1 · 10 ⁷	6 · 106
¹³⁷ 58Ce	W	5 · 10° 5 · 10°	2 · 106 2 · 106	5 · 10 ⁸ 5 · 10 ⁸	2 · 108
1 ^{37m} Ce	W Y	2 · 10 ⁸ 1 · 10 ⁸	7 · 10 ⁴ 6 · 10 ⁴	2 · 10 ⁷ 1 · 10 ⁷	9 · 106
139 58 Ce	W Y	3 · 10 ⁷ 2 · 10 ⁷	1 · 10 ⁴ 1 · 10 ⁴	3 · 10 ⁶ 2 · 10 ⁶	2 · 107
¹⁴¹ 58Ce	w Y	3 · 10 ⁷ 2 · 10 ⁷	1 · 10 ⁴ 9 · 10 ³	3 · 106 2 · 106	6 · 106
¹⁴³ Ce	W Y	7 · 10 ⁷ 6 · 10 ⁷	3 · 10 ⁴ 2 · 10 ⁴	7 · 106 5 · 106	4 · 106
¹⁴⁴ ₅₈ Ce	W Y	9 · 10 ⁵ 5 · 10 ⁵	4 · 10 ² 2 · 10 ²	9 · 10 ⁴ 5 · 10 ⁴	8 · 105
²⁰³ Po	D W	2 · 10° 3 · 10°	1 · 106 1 · 106	2 · 10 ⁸ 3 · 10 ⁸	9 · 107
²⁰⁵ ₈₄ Po	D W	1 · 109 3 · 109	6 · 10 ⁵ 1 · 10 ⁶	1 · 108 3 · 108	8 · 107

	1	Trabajadoi	res expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año Bq m ⁻³	Limites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
_		Bq		Bq	Bq
1	2	3	4	5	6
²⁰⁷ ₈₄ Po	D	9 · 10 ⁸	4 · 105	9 · 107	
	w	1 · 109	4 · 105	1 · 108	3 · 107
²¹⁰ ₈₄ Po	D	2 · 104	1 · 101	2 · 103	.,
84- 0	w	2 · 104	1 · 101	2 · 10 ³	<u>!</u>
				2 10	1 ⋅ 10⁴
²²³ ₈₈ Ra	w	3 · 104	1 · 101	3 · 103	2 · 104
774n		·			
²²⁴ 88 88	W	6 · 10 ⁴	3 · 101	6 · 10³	3 · 104
²²⁵ ₈₈ Ra	w	2 · 104	1 · 101	2 · 10³	3 · 104
²²⁶ ₈₈ Ra	w	2 · 104	1 · 101	2 · 10³	7 · 10³
²²⁷ 88Ra	w	5 · 108	2 · 105	5 · 107	6 · 107
²²⁸ Ra	w	4 · 104	2 · 101	4 · 10³	9 · 10³
²²⁶ 7h	w	(10			
90111	Y	6 · 10 ⁶ 5 · 10 ⁶	2 · 10³ 2 · 10³	6 · 10 ⁵ 5 · 10 ⁵	
					2 · 107
²⁷ Th	w	1 · 104	5 · 100	1 · 103	
	Y	1 · 104	5 · 100	1 · 10³	5 · 10 ⁵
²⁸ Th	w	4 · 10²	2 · 10-1	4 · 101	
~	Y	6 · 102	3 · 10-1	6 · 101	
					2 · 104
²⁹ Th	w	3 · 101	1 · 10-2	3 · 100	
	Y	9 · 101	4 · 10-2	9 · 100	
	ļ.				2 · 103

		Trabajado	es expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
³⁰ Th	w	2 · 102	1 · 10-1	2 · 101	1	
90	Y	6 · 10²	2 · 10-1	6 · 101	1 · 104	
²³¹ 7h	w	2 · 108	1 · 105	2 · 107		
901	Y	2 · 108	1 · 105	2 · 107	1 · 107	
²³² 7h	w	4 · 101	2 · 10-2	4 · 100		
90111	Ÿ	1 - 102	4 · 10-2	1 · 101	3 · 103	
²³⁴ Th	W	7 · 106 6 · 106	3 · 10 ³ 2 · 10 ³	7 · 10 ⁵ 6 · 10 ⁵	1 · 10*	
₂₀ Th-nat	w Y	7 · 10 ¹ 2 · 10 ²	4 · 10-2 7 · 10-2	7 · 10° 2 · 10¹	5 · 10 ·	
²³⁰ 92U(***)	D W Y	2 · 10 ⁴ 1 · 10 ⁴ 1 · 10 ⁴	6 · 10° 5 · 10° 4 · 10°	2 · 10 ³ 1 · 10 ³ 1 · 10 ³	a) 1 · 10 ⁴ b) 2 · 10 ⁵	
²³¹ 92U(***)	D W Y	3 · 10 ⁸ 2 · 10 ⁸ 2 · 10 ⁹	1 · 10 ⁵ 9 · 10 ⁴ 7 · 10 ⁴	3 · 10 ⁷ 2 · 10 ⁷ 2 · 10 ⁷	2 · 107	
232 92U(***)	D W Y	8 · 10 ³ 1 · 10 ⁴ 3 · 10 ²	3 · 10° 6 · 10° 1 · 10-1	8 · 10 ² 1 · 10 ³	a) 8 · 10 ³ b) 2 · 10 ⁵	
²³³ ₉₂ U(***)	D W Y	4 · 10 ⁴ 3 · 10 ⁴ 1 · 10 ³	2 · 10 ¹ 1 · 10 ¹ 6 · 10 ⁻¹	4 · 10 ³ 3 · 10 ³ 1 · 10 ²	a) 4 · 10 ⁴ b) 7 · 10 ⁵	

		Trabajado	res expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Bq	Bq m ⁻³	Bq	Bq
1	2	3	4	5	6
²³⁴ ₉₂ U(***)	D	5 · 104	2 · 101	5 · 10³	
92-()	w	3 · 104	1 · 101	3 · 103	
	Y	1 · 103	6 · 10-1	1 · 102	
					a) 4 · 104
					b) 7 · 10 ^s
²³⁵ ₉₂ U(***)	D	5 · 104	2 · 101	5 · 103	
	w	3 · 104	1 · 101	3 · 103	
	Y	2 · 103	6 · 10-1	2 · 102	
					a) 5 · 10 ⁴ b) 7 · 10 ⁵
²³⁶ ₉₂ U(***)	D	5 · 104	2 · 101	5 · 103	
	w	3 · 104	1 · 101	3 · 103	
	Y	1 · 103	6 · 10-1	1 · 102	
	[a) 5 · 10 ⁴
					b) 8 · 10 ^s
²³⁷ 92 ^{U(***)}	D	1 · 108	4 · 104	1 · 107	
	W	6 · 107	3 · 104	6 · 106	
	Y	6 · 107	2 · 104	6 · 106	6 · 106
²³⁸ 92U(***)	D	5 · 104	2 · 101	5 10	
920()	w	3 · 104	1 · 10	5 · 10 ³ 3 · 10 ³	
	Y	$2 \cdot 10^3$	7 · 10-1	2 · 10 ²	
İ			, 10	2 10	a) 5 · 10 ⁴ b) 8 · 10 ⁵
³⁹ ₉₂ U(***)	D	7 · 109	3 · 106	7 - 108	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	w	6 · 109	3 · 106	6 · 108	
	Y	6 · 109	2 · 106	6 · 108	
					2 · 108
⁴⁰ ₉₂ U(***)	D	1 · 108	6 · 104	1 · 107	
	w	1 · 108	4 · 104	1 · 107	
	Y	9 · 107	4 · 104	9 · 106	
					5 · 106
₀₂ U-nat(***)	D	5 · 104	2 · 101	5 · 10³	
	w	3 · 104	1 · 101	3 · 103	
	Y	1 · 103	6 · 10-1	1 · 102	
•					a) 5 · 104
}					b) 7 · 10 ⁵

		Trabajado	res expuestos	Público e	n general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Bq	Bq m ⁻³	Bq	Bq
1	2	3	4	5	6
²³⁴ Pu	w	8 · 106	3 · 103	8 · 105	
	Y	7 · 106	3 · 103	7 · 105	3 · 107
³⁵ Pu	w	1 · 1011	5 · 107	1 · 1010	
7	Y	9 · 1010	4 · 107	9 · 109	3 · 109
	w	7 · 10 ²	3 · 10-1	7 · 101	
941 0	Y	1 · 103	6 · 10-1	1 · 102	
					a) 8 · 10 ⁴ b) 6 · 10 ⁵
²³⁷ Pu	w	1 · 108	5 · 104	1 · 107	
94	Y	1 · 109	5 · 104	1 · 107	
					5 · 10 ⁷
238 94 Pu	w	2 · 102	9 · 10-2	2 · 101	
94	Y	6 · 102	3 · 10-1	6 · 101	
					a) 3 · 10 ⁴ b) 3 · 10 ⁵
²³⁹ Pu	w	2 · 102	8 · 10-2	2 · 101	
~	Y	5 · 10 ²	2 · 10-1	5 · 101	
					a) 2 · 10 ⁴ b) 2 · 10 ⁵
²⁴⁰ Pu	w	2 · 102	8 · 10-2	2 · 101	
	Y	5 · 102	2 · 10-1	5 · 101	
				·	a) 2 · 10 ⁴ b) 2 · 10 ⁵
²⁴¹ 94Pu	w	1 · 104	4 · 100	1 · 103	
	Y	2 · 104	1 · 101	2 · 103	
					a) 1 · 10 ⁶ b) 1 · 10 ⁷
²⁴² Pu	w	2 · 102	9 · 10-2	2 · 101	
A	Y	6 · 102	2 · 10-1	6 · 10¹	
					a) 3 · 10 ⁴ b) 3 · 10 ⁵
²⁴³ ₉₄ Pu	w	1 · 109	5 · 105	1 · 108	
••	Y	1 · 109	6 · 10 ⁵	1 · 108	
					6 · 107

		Trabajadores expuestos		Público en general		
Radionucleidos	Forma (**)	Limites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq .	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
²⁴⁴ ₉₄ Pu	w	2 · 102	9 · 10-2	2 · 101		
	Y	6 · 10 ²	2 · 10-1	6 · 101		
					a) 3 · 10 ⁴ b) 3 · 10 ⁵	
²⁴⁵ ₉₄ Pu	w	2 · 108	7 · 104	2 · 107	·,	
,,	Y	2 · 108	6 · 104	$2 \cdot 10^7$		
					8 · 106	
²³⁷ ₉₅ Am	w	1 · 1010	4 · 106	1 · 109		
					3 · 108	
238 95Am	w	1 · 108	4 · 104	1 · 107		
73		1 10	7 10	1 - 10	1 · 108	
²³⁹ ₉₅ Am	w	5 · 108	2 · 105	5 · 107		
73		3 10	2 10	3 10	2 · 107	
²⁴⁰ ₉₅ Am	w	1 · 108	4 · 104	1 · 107		
				0	8 · 106	
²⁴¹ ₉₅ Am	w	2 · 10²	8 · 10-2	2 · 101		
					5 · 103	
^{242m} ₉₅ Am	w	2 · 10²	8 · 10-2	2 · 101		
					5 · 103	
²⁴² ₉₅ Am	w	3 · 106	1 · 103	3 · 105		
				5 10	2 · 107	
²⁴³ ₉₅ Am	w	2 · 102	8 · 10-2	2 · 101		
				2 10	5 · 10³	
^{244m} ₉₅ Am	w	1 · 108	6 · 104	1 · 107		
				. 10	2 · 108	
244 95Am	w	6 · 106	3 · 10³	6 · 105		
					1 · 107	
²⁴⁵ ₉₅ Am	w	3 · 109	1 · 106	3 · 108	<u>-</u>	
					1 · 108	
^{46m} ₉₅ Am	w	6 · 10°	3 · 106	6 · 108		
	}				2 · 108	

	1	Trabajadores expuestos		Público en general		
Radionucleidos Foi	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Bq	Bq m ⁻³	Bq	Bq	
1	2	3	4	5	6	
²⁴⁶ ₉₅ Am	w	4 - 109	2 · 106	4 · 108	1 · 108	
²³⁸ ₉₆ Cm	w	4 · 10 ⁷	2 · 104	4 · 106	6 · 107	
²⁴⁰ ₉₆ Cm	w	2 · 104	8 · 100	1 · 103	4 - 105	
²⁴¹ ₉₆ Cm	w	9 · 105	4 · 102	9 · 104	5 · 106	
²⁴² ₉₆ Cm	w	1 · 104	4 · 100	1 · 10³	2 · 105	
²⁴³ ₉₆ Cm	w	3 · 102	1 · 10-1	3 · 101	7 · 10³	
²⁴⁴ Cm	w	4 · 10²	2 · 10-1	4 · 101	9 · 10	
²⁴⁵ ₉₆ Cm	W	2 · 10²	8 · 10-2	2 · 101	5 · 103	
²⁴⁶ ₉₆ Cm	w	2 · 102	8 · 10-2	2 · 101	5 · 10³	
²⁴⁷ ₉₆ Cm	w	2 · 10²	9 · 10-2	2 · 101	5 · 103	
²⁴⁸ ₉₆ Cm	w	5 · 101	2 · 10-2	5 · 100	1 · 10	
²⁴⁹ ₉₆ Cm	w	5 10*	2 · 105	5 · 107	2 · 108	
²⁴⁴ 08 98 1	W Y	2 · 10 ⁷ 2 · 10 ⁷	9 · 10 ³ 9 · 10 ³	2 · 106 2 · 106	9 · 107	
²⁴⁶ 98Cf	W Y	4 · 10 ⁵ 3 · 10 ⁵	2 · 10 ² 1 · 10 ²	4 · 10 ⁴ 3 · 10 ⁴	1 · 10•	

		Trabajade	ores expuestos	Público e	en general
Radionucleidos	Forma (*)	Forma (*) Límites de incorporación anual por inhalación	Limites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Bq	Bq m ⁻³	Bq	Bq
1	2	3	4	5	6
²⁴⁸ ₉₈ Cf	w	3 · 103	1 · 100	2 101	
	Y	4 · 103	2 · 100	3 · 10² 4 · 10²	
					8 · 104
²⁴⁹ 98Cf	w	2 · 102	8 · 10-2	2 · 101	
	Y	5 · 10 ²	2 · 10-1	5 · 101	
				3 10	4 · 103
⁵⁰ ₉₈ Cf	w	5 · 102	2 · 10-1	5 101	
	Y	1 · 103	4 · 10-1	5 · 10 ¹ 1 · 10 ²	
				1 10	1 ⋅ 10⁴
⁵¹ Cf	w	2 · 102	8 · 10-2	2 · 101	
	Y	5 · 102	2 · 10-1	5 · 101	
					4 · 10³
² ₈ Cf	w	1 - 103	4 · 10-1	1 · 102	
	Y	1 · 103	6 · 10-1	1 · 102	
					2 · 104
³ Cf	w	7 · 104	3 - 101	7 · 103	
i	Y	6 · 104	3 · 101	6 · 103	
].	2 · 106
Cf	w	8 · 102	4 · 10-1	8 · 101	
l	Y	6 · 10 ²	3 · 10-1	6 · 101	
					1 · 104

 ^(*) Para la utilización de los signos D (= dia), W (= semanal), Y (=año), dirigirse al cuado 1 c.
 (**) Respecto a (a) y (b) ver cuadro 1 d.
 (***) Vista la toxicidad quimica de los compuestos solubles del uranio, la inhalación y la ingestión no deberán sobrepasar 2,5 mg y 150 mg respectivamente en un dia cualquiera que sea la composición isotópica.

CUADRO 1 b
(Actividades expresadas en curios)

		Trabajado	res expuestos	Público e	n general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
	<u> </u>	Ci	Ci m ⁻³	Ci	Ci
ı	2	3	4	5	6
³ H	Eau	8,1 · 10-2	2,2 · 10-5	8,1 · 10-3	8,1 · 10 -3
³ ₁ H	Elément		5,4 - 10-1		
32 _P	D	8,1 · 10-4	2,7 · 10-7	8,1 · 10-5	
•5	w	2,7 · 10-4	1,6 · 10-7	2,7 · 10-5	
					5,4 · 10-5
33P	D	8,1 · 10-3	2,7 · 10-6	8,1 · 10-4	
	W	2,7 · 10-3	1,1 · 10-6	2,7 ⋅ 10-4	54 104
					5,4 · 10-4
⁵¹ Mn	D	5,4 · 10-2	2,2 · 10-5	5,4 · 10-3	
25	w	5,4 · 10-2	2,4 · 10-5	5,4 · 10-3	ł
				1	1,9 · 10-3
52 ₂₅ Mn	D	1,1 · 10-3	5,4 · 10-7	1,1 · 10-4	
23	w	8,1 ⋅ 10-4	2,7 · 10-7	8,1 · 10-5	Í
				ł	8,1 · 10-5
52m 25 Mn	D	8,1 · 10-2	2,7 · 10-5	8,1 · 10-3	
	w	1,1 · 10-1	5,4 · 10-5	1,1 · 10-2	
					2,7 · 10-3
53 25 Mn	D	1,4 · 10-2	5,4 · 10-6	1,4 · 10-3	
	w	1,1 · 10-2	5,4 · 10-6	1,1 · 10-3	
					5,4 · 10-3
54 25Mn	D	8,1 · 10-4	2,7 · 10-7	8,1 · 10-5	
-	w	8,1 · 10-4	2,7 · 10-7	8,1 · 10-5	
					1,9 · 10-4
56 25Mn	D	1,6 · 10-2	5,4 · 10-6	1,6 · 10-3	
	w	2,2 · 10-2	8,1 · 10-6	2,2 · 10-3	
					5,4 · 10-4

^{(*) (**) (***)} Ver notas à pie de página al final de este cuadro.

		Trabajador	res expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Ci	Ci m ⁻³	Ci	C i
1	2	3	4	5	6
55 27 Co	W Y	2,7 · 10-3 2,7 · 10-3	1,1 · 10·6 1,1 · 10·6	2,7 · 10-4 2,7 · 10-4	a) 1,1 · 10-4 b) 1,6 · 10-4
56 27Co	W Y	2,7 · 10-4 1,9 · 10-4	1,4 · 10-7 8,1 · 10-8	2,7 · 10-5 1,9 · 10-5	5,4 · 10- ⁵
57Co	W Y	2,7 · 10-3 5,4 · 10-4	1,1 · 10-6 2,7 · 10-7	2,7 · 10-4 5,4 · 10-5	a) 8,1 · 10-4 b) 5,4 · 10-4
58 27 Co	W Y	1,1 · 10-3 8,1 · 10-4	5,4 · 10- ⁷ 2,7 · 10- ⁷	1,1 · 10-4 8,1 · 10-5	a) 1,6 · 10-4 b) 1,4 · 10-4
^{58m} Co	W Y	8,1 · 10 ⁻² 5,4 · 10 ⁻²	2,7 · 10-5 2,7 · 10-5	8,1 · 10- ³ 5,4 · 10- ³	5,4 · 10 ⁻³
⁶⁰ ₂₇ Co	W Y	1,6 · 10-4 2,7 · 10-5	8,1 · 10-8 1,4 · 10-8	1,6 · 10-5 2,7 · 10-6	a) 5,4 · 10 ⁻⁵ b) 1,9 · 10 ⁻⁵
^{60m} Co	W Y	2,7 · 10-° 2,7 · 10-°	1,6 · 10-3 1,1 · 10-3	2,7 · 10-1 2,7 · 10-1	1,1 · 10-1
61 27 Co	W Y	5,4 · 10-2 5,4 · 10-2	2,7 · 10-5 2,4 · 10-5	5,4 · 10-3 5,4 · 10-3	a) 1,9 · 10-3 b) 2,2 · 10-3
^{52m} Co	W Y	1,6 · 10-1 1,6 · 10-1	8,1 · 10-5 5,4 · 10-5	1,6 · 10-2 1,6 · 10-2	2,7 - 10-3
74Kr			2,7 · 10-6		
¹⁶ Kr			8,1 · 10-6		·

		Trabajador	es expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
	<u> </u>	Ci	Ci m ⁻³	Ci	Ci	
1	2	3	4	5	6	
⁷⁷ ₃₆ Kr			2,7 · 10-6			
⁷⁹ ₃₆ Kr			1,6 · 10-5			
81 36 K r			5,4 · 10-4			
83m 36 Kr			2,4 · 10-2			
85m 36 Kr			2,2 · 10-5			
85 36Kr			1,4 · 10-4			
87 36Kr			5,4 · 10-6		-	
88 36 Kr			1,9 · 10-6			
80 38 Sr	D Y	2,2 · 10-0 2,4 · 10-0	8,1 · 10-4 1,1 · 10-3	2,2 · 10-1 2,4 · 10-1	1,1 · 10-1	
81 38 Sr	D Y	8,1 · 10-2 8,1 · 10-2	2,7 · 10-5 2,7 · 10-5	8,1 · 10-3 8,1 · 10-3	2,4 · 10-3	
⁸³ 3 ₈ Sr	D Y	8,1 · 10- ³ 2,7 · 10- ³	2,7 · 10-6 1,4 · 10-6	8,1 · 10-4 2,7 · 10-4	a) 2,7 · 10-4 b) 2,2 · 10-4	
85 38 Sr	D Y	5,4 · 10-1 8,1 · 10-1	2,4 · 10-4 2,7 · 10-4	5,4 · 10- ² 8,1 · 10- ²	2,2 · 10-2	
85 38 Sr	D Y	2,7 · 10- ³ 1,6 · 10- ³	1,1 · 10-6 5,4 · 10-7	2,7 · 10-4 1,6 · 10-4	a) 2,4 · 10·4 b) 2,7 · 10·4	
^{87m} Sr	D Y	1,4 · 10-1 1,6 · 10-1	5,4 · 10·5 5,4 · 10·5	1,4 · 10- ² 1,6 · 10- ²	a) 5,4 · 10-3 b) 2,7 · 10-3	

		Trabajador	es expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Limites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Limites de incorporación anual por ingestión (**)	
		Ci	Ci m ⁻³	Ci	Ci	
1	2	3	4	5	6	
89 38	D	8,1 · 10-4	2,7 · 10-7	8,1 · 10-5		
	Y	1,4 · 10-4	5,4 · 10-8	1,4 · 10-5	5,4 · 10 ⁻⁵	
90 38 Sr	D	1,9 · 10-5	8,1 · 10-9	1,9 · 10-6		
	Y	2,7 · 10-6	1,6 · 10-9	2,7 · 10-7	a) 2,7 · 10-6 b) 5,4 · 10-5	
⁹¹ 38Sr	D	5,4 · 10-3	2,4 · 10-6	5,4 · 10-4		
	Y	2,7 · 10-3	1,4 · 10-6	2,7 · 10-4	a) 2,2 · 10-4 b) 1,6 · 10-4	
92 38	D	8,1 · 10-3	2,7 · 10-6	8,1 · 10-4		
	Y	5,4 · 10-3	2,7 · 10-6	5,4 · 10-4	2,7 · 10-4	
86 Zг	D	2,7 · 10-3	1,6 · 10-6	2,7 · 10-4		
	W	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4		
	Y	2,4 · 10- ³	1,1 · 10-6	2,4 · 10-4	1,4 · 10-4	
88 40 Z r	D	2,2 · 10-4	8,1 · 10-8	2,2 · 10-5		
	W	5,4 ⋅ 10-4	1,9 · 10-7	5,4 · 10-5		
	Y	2,7 · 10-4	1,4 · 10-7	2,7 10-5	2,7 · 10-4	
89 40	D	2,7 · 10-3	1,4 · 10-6	2,7 · 10-4		
	W	2,4 · 10-3	1,1 · 10-6	2,4 · 10-4		
	Y	2,4 · 10- ³	1,1 · 10-6	2,4 · 10-4	1,6 · 10-4	
—————————————————————————————————————	D	5,4 · 10-6	2,7 · 10-9	5,4 · 10-7		
	W	2,4 · 10-5	1,1 · 10-8	2,4 · 10-6		
	Y	5,4 · 10- ⁵	2,4 · 10-8	5,4 · 10-6	1,4 · 10-4	
95 40 Z r	D	1,4 · 10-⁴	5,4 · 10-8	1,4 · 10-5		
	w	2,7 · 10-4	1,6 · 10-7	2,7 · 10-5		
	Y	2,7 ⋅ 10-4	1,1 · 10-7	2,7 · 10-5	1,4 · 10-4	

		Trabajador	es expuestos	Público en general		
Radionucleidos Forma (**	Forma (**)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		2 000 h/año Ci	Ci m ⁻³	Ci	Ci	
1	2	3	4	5	6	
97 40 Zr	D	1.9 · 10-3	8,1 · 10-7	1,9 · 10-4	- 1	
4021	w	1,4 · 10-3	5,4 · 10-7	1,4 · 10-4		
	Y	1,4 · 10-3	5,4 · 10-7	1,4 · 10-4		
					5,4 · 10-5	
⁸⁸ 1Nb	w	2,2 · 10-1	1,1 · 10-4	2,2 · 10-2		
	Y	2,2 · 10-1	8,1 · 10-5	2,2 · 10-2	5.4 . 10-3	
					5,4 · 10-3	
⁸⁹ Nb	w	5,4 · 10-2	1,6 · 10-5	5,4 · 10-3		
(66 min)	Y	2,7 · 10-2	1,6 · 10-5	2,7 · 10-3		
 ,					1,1 · 10-3	
⁸⁹ Nb (122 min)	w	1,9 · 10-2	8,1 · 10-6	1,9 · 10-3		
(122 mm)	Y	1,6 · 10-2	5,4 · 10-6	1,6 · 10-3	5.4. 10.4	
					5,4 · 10-4	
⁹⁰ Nb	w	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4	_	
	Y	2,4 · 10-3	1,1 · 10-6	2,4 · 10-4		
					1,1 · 10-4	
^{93m} Nb	w	1,4 · 10-3	5,4 · 10-7	1,4 · 10-4		
	Y	1,6 · 10-4	8,1 · 10-8	1,6 · 10-5		
					8,1 · 10-4	
P4Nb	w	1,9 · 10-4	8,1 · 10-8	1,9 · 10-5		
	Y	1,6 · 10-5	5,4 · 10-9	1,6 · 10-6		
					1,1 - 10-4	
Nb	w	1,4 · 10-3	5,4 · 10-7	1,4 · 10-4		
	Y	1,1 · 10-3	5,4 · 10-7	1,1 · 10-4		
					2,2 ⋅ 10-4	
^{25m} Nb	W	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4		
	Y	2,2 · 10-3	8,1 · 10- ⁷	2,2 · 10-4		
					2,2 · 10-4	
¹⁶ Nb	w	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4	//	
	Y	2,4 · 10-3	1,1 · 10-6	2,4 · 10-4		
					1,1 · 10-4	
⁷ Nb	w	8,1 · 10-2	2,7 · 10-5	8,1 · 10-3	. 20-11.	
	Y	8,1 · 10-2	2,7 · 10-5	8,1 · 10-3		
					2,2 · 10-3	

		Trabajadores expuestos		Público en general	
Radionucleidos	Forma (*)	Límites de incorporación anual Forma (*) por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Ci	Ci m ⁻³	Ci	Ci
1	2	3	4	5	6
98 41 Nb	w	5,4 · 10-2	2,2 · 10-5	5,4 · 10-3	
	Y	5,4 · 10-2	2,2 · 10-5	5,4 · 10-3	1,4 · 10-3
⁹⁰ Mo	D Y	8,1 · 10 ⁻³ 5,4 · 10 ⁻³	2,7 · 10-6 1,9 · 10-6	8,1 · 10-4 5,4 · 10-4	a) 5,4 · 10-4 b) 1,9 · 10-4
93 42 Mo	D Y	5,4 · 10 ⁻³ 1,9 · 10 ⁻⁴	2,2 · 10-6 8,1 · 10-8	5,4 · 10-4 1,9 · 10-5	
	1	1,9 10	5,1 10	1,5 10	a) 2,7 · 10-4 b) 2,4 · 10-3
^{93m} Mo	D Y	1,9 · 10-2 1,4 · 10-2	8,1 · 10-6 5,4 · 10-6	1,9 · 10-3 1,4 · 10-3	a) 1,1 · 10- ³ b) 5,4 · 10- ⁴
99 42 Mo	D Y	2,7 · 10-3 1,4 · 10-3	1,1 · 10-6 5,4 · 10-7	2,7 · 10-4 1,4 · 10-4	a) 1,6 · 10-4 b) 1,1 · 10-4
¹⁰¹ Mo	D Y	1,4 · 10 ⁻¹ 1,6 · 10 ⁻¹	5,4 · 10-5 5,4 · 10-5	1,4 · 10-2 1,6 · 10-2	5,4 · 10-3
¹¹⁶ Te	D Y	2,2 · 10 ⁻² 2,7 · 10 ⁻²	8,1 · 10-6 1,4 · 10-5	2,2 · 10-3 2,7 · 10-3	8,1 ⋅ 10-4
¹²¹ ₅₂ Te	D W	5,4 · 10 ⁻³ 2,7 · 10 ⁻³	1,6 · 10-6 1,4 · 10-6	5,4 · 10-4 2,7 · 10-4	2,7 ⋅ 10-4
^{121m} Te	D W	1,9 · 10-4 5,4 · 10-4	8,1 · 10-8 1,6 · 10-7	1,9 · 10-5 5,4 · 10-5	5,4 · 10-5
¹²³ ₅₂ Te	D W	1,9 · 10-4 5,4 · 10-4	8,1 · 10-8 1,9 · 10-7	1,9 · 10-5 5,4 · 10-5	5,4 · 10 ⁻⁵

		Trabajador	es expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Limites de incorporación anual por inhalación	Limites de incorporación anual por ingestión (**)	
		Ci	Ci m ⁻³	Ci	Ci	
1	2	3	4	5	6	
^{23m} Te	D	2,2 · 10-4	8,1 10-8	2,2 · 10-5		
52 - 5	w	5,4 · 10-4	2,2 · 10-7	5,4 · 10-5	5,4 · 10 ⁻⁵	
^{25m} Te	D W	5,4 · 10-4 8,1 · 10-4	1,6 · 10-7 2,7 · 10-7	5,4 · 10·5 8,1 · 10·5	1,1 · 10-4	
²⁷ ₅₂ Te	D	2.2 · 10-2	8,1 · 10-6	2,2 · 10-3		
5216	w	1,6 · 10-2	8,1 · 10-6	1,6 · 10-3	8,1 · 10-4	
^{127m} Te	D W	2,7 · 10-4 2,4 · 10-4	1,1 · 10-7 1,1 · 10-7	2,7 · 10-5 2,4 · 10-5	5,4 · 10-5	
129 52 Te	D W	5,4 · 10-2 8,1 · 10-2	2,7 · 10-5 2,7 · 10-5	5,4 · 10-3 8,1 · 10-3	2,7 · 10-3	
^{129m} Te	D W	5,4 · 10-4 2,4 · 10-4	2,7 · 10-7 1,1 · 10-7	5,4 · 10-5 2,4 · 10-5	5,4 · 10-5	
131 52Te	D W	5,4 · 10-3 8,1 · 10-3	2,2 · 10-6 2,7 · 10-6	5,4 · 10-4 8,1 · 10-4	5,4 · 10-4	
^{131m} Te	D W	5,4 · 10-4 8,1 · 10-4	2,7 · 10- ⁷ 2,7 · 10- ⁷	5,4 · 10-5 8,1 · 10-5	5,4 · 10-5	
¹³² ₅₂ Te	D W	2,2 · 10-4 1,9 · 10-4	1,1 · 10- ⁷ 8,1 · 10- ⁸	2,2 · 10-5 1,9 · 10-5	5,4 · 10-6	
133 ₅₂ Te	D W	1,9 · 10 ⁻² 2,7 · 10 ⁻²	8,1 · 10-6 1,4 · 10-5	1,9 · 10-3 2,7 · 10-3	1,4 · 10-3	
133m 52 Te	D W	2,7 · 10 ⁻³ 5,4 · 10 ⁻³	1,6 · 10-6 2,7 · 10-6	2,7 · 10-4 5,4 · 10-4	2,7 · 10-4	

		Trabajador	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Ci	Ci m ⁻³	Ci	Ci
1	2	3	4	5	6
134 52Te	D W	2,7 · 10- ³ 8,1 · 10- ³	1,4 · 10-6 2,7 · 10-6	2,7 · 10-4 8,1 · 10-4	5,4 · 10-5
120 53	D	8,1 · 10-3	2,7 · 10-6	8,1 · 10-⁴	2,7 · 10-4
^{120m} I	D	2,2 · 10-2	8,1 · 10-6	2,2 · 10-3	1,1 · 10-3
121 ₅₃ I	D	1,9 · 10-2	8,1 · 10-6	1,9 10-3	1,1 · 10-3
¹²³ 53I	D	5,4 · 10-3	2,4 · 10-6	5,4 · 10-4	2,7 · 10-4
¹²⁴ 53I	D	8,1 · 10-5	2,7 · 10-8	8,1 · 10-6	5,4 · 10-6
¹²⁵ ₅₃ I	D	5,4 · 10-5	2,7 · 10-8	5,4 · 10-6	2,7 · 10-6
126 ₅₃ I	D	2,7 · 10-5	1,4 · 10-8	2,7 · 10-6	2,2 · 10-6
128 ₅₃ 1	D	1,1 - 10-1	5,4 · 10-5	1,1 · 10-2	5,4 · 10-3
²⁹ ₅₃ I	D	8,1 · 10-6	2,7 · 10-9	8,1 · 10-7	5,4 · 10- ⁷
30 ₁	D	8,1 · 10-4	2,7 · 10-7	8,1 · 10-5	2,7 · 10-5
331 331	D	5,4 · 10-5	1,9 · 10-8	5,4 · 10-6	2,7 · 10-6
32 ₃ 1	D	8,1 · 10-3	2,7 · 10-6	8,1 · 10-4	2,7 · 10-4
^{32m} I	D	8,1 · 10-3	2,7 · 10-6	8,1 · 10-4	2,7 · 10-4

		Trabajadores expuestos		Público en general		
Radionucleidos	Forma (**)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		2 000 h/año Ci	Ci m ⁻³	Ci	Ci	
1	2	3	4	5	6	
133 ₅₃ I	D	2,7 · 10-4	1,1 · 10-7	2,7 · 10-5	1,4 · 10-5	
134 ₅₃ I	D	5,4 · 10-2	1,9 · 10-5	5,4 · 10-3	2,2 · 10-3	
135 ₅₃ I	D	1,6 · 10-3	5,4 · 10-7	1,6 - 10-4	8,1 · 10-5	
¹²⁵ ₅₅ Cs	D	1,4 · 10-1	5,4 · 10-5	1,4 · 10-2	5,4 · 10·3	
¹²⁷ ₅₅ Cs	D	1,1 · 10-1	2,7 · 10-5	1,1 · 10-2	5,4 · 10-3	
129 ₅₅ Cs	D	2,7 · 10-2	1,4 · 10-5	2,7 · 10-3	2,4 · 10-3	
¹³⁰ ₅₅ Cs	D	1,9 · 10-1	8,1 · 10-5	1,9 · 10-2	5,4 · 10-3	
131 ₅₅ Cs	D	2,7 · 10-2	1,4 · 10-5	2,7 · 10-3	2,2 · 10-3	
132 ₅₅ Cs	D	2,7 · 10-3	1,6 · 10-6	2,7 · 10-4	2,7 · 10-4	
134 ₅₅ Cs	D	1,1 · 10-4	5,4 · 10-8	1,1 · 10-5	8,1 · 10-6	
134m ₅₅ Cs	D	1,4 · 10-1	5,4 · 10-5	1,4 · 10-2	1,1 · 10-2	
135 ₅₅ Cs	D	1,1 · 10-3	5,4 · 10-7	1,1 · 10-4	8,1 · 10-5	
135m 55 Cs	D	1,9 · 10-1	8,1 · 10-5	1,9 · 10-2	1,1 · 10-2	
136 55Cs	D	5,4 · 10-4	2,7 · 10-7	5,4 · 10-5	5,4 · 10-5	
137 55Cs	D	1,6 · 10-4	5,4 · 10-8	1,6 10-5	1,1 · 10-5	

		Trabajador	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
	ļ	Ci	Ci m ⁻³	Ci	Ci
1	2	3	4	5	6
¹³⁸ Cs	D	5,4 · 10-2	2,4 · 10-5	5,4 - 10-3	1,9 - 10-3
134 58Ce	W Y	8,1 · 10-4 5,4 · 10-4	2,7 · 10- ⁷ 2,7 · 10- ⁷	8,1 · 10-5 5,4 · 10-5	5,4 · 10-5
135 58Ce	W Y	2,7 · 10-3 2,7 · 10-3	1,6 · 10-6 1,4 · 10-6	2,7 · 10-4 2,7 · 10-4	1,6 · 10-4
137 ₅₈ Ce	W Y	1,4 · 10-1 1,4 · 10-1	5,4 · 10-5 5,4 · 10-5	1,4 · 10-2 1,4 · 10-2	5,4 · 10-3
137m 58 Ce	W Y	5,4 · 10- ³ 2,7 · 10- ³	1,9 · 10-6 1,6 · 10-6	5,4 · 10-4 2,7 · 10-4	2,4 · 10-4
139 58Ce	W Y	8,1 · 10-4 5,4 · 10-4	2,7 · 10- ⁷ 2,7 · 10- ⁷	8,1 · 10-5 5,4 · 10-5	5,4 · 10-4
¹⁴¹ 58Ce	W Y	8,1 · 10-4 5,4 · 10-4	2,7 · 10 ⁻⁷ 2,4 · 10 ⁻⁷	8,1 · 10-5 5,4 · 10-5	1,6 · 10-⁴
¹⁴³ 58Ce	W Y	1,9 · 10-3 1,6 · 10-3	8,1 · 10- ⁷ 5,4 · 10- ⁷	1,9 · 10-4 1,6 · 10-4	1,1 · 10-4
144 ₅₈ Ce	W Y	2,4 · 10-5 1,4 · 10-5	1,1 · 10-8 5,4 · 10-9	2,4 · 10-6 1,4 · 10-6	2,2 · 10-5
²⁰³ Po	D W	5,4 · 10-2 8,1 · 10-2	2,7 · 10-5 2,7 · 10-5	5,4 · 10-3 8,1 · 10-3	2,4 · 10-3
²⁰⁵ ₈₄ Po	D W	2,7 · 10-2 8,1 · 10-2	1,6 · 10-5 2,7 · 10-5	2,7 · 10 ⁻³ 8,1 · 10 ⁻³	2,2 · 10·3

		Trabajadores expuestos		Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Limites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		Ci	Ci m-3	Ci	Ci	
1	2	3	4	5	6	
⁰⁷ Po	D	2,4 · 10-2	1,1 · 10-5	2,4 · 10-3		
04	w	2,7 · 10 ⁻²	1,1 · 10-5	2,7 · 10-3	8,1 · 10-4	
¹⁰ 84Po	D W	5,4 · 10 ⁻⁷ 5,4 · 10 ⁻⁷	2,7 · 10-10 2,7 · 10-10	5,4 · 10-8 5,4 · 10-8	2,7 · 10- ⁷	
²²³ 88	w	8,1 · 10-7	2,7 · 10-10	8,1 · 10-8	5,4 · 10 ⁻⁷	
²²⁴ 88	w	1,6 · 10-6	8,1 · 10-10	1,6 · 10-7	8,1 · 10-7	
²²⁵ ₈₈ Ra	w	5,4 · 10-7	2,7 · 10-10	5,4 · 10-8	8,1 · 10-7	
²²⁶ Ra	w	5,4 · 10-7	2,7 · 10-10	5,4 · 10-8	1,9 · 10-7	
²²⁷ ₈₈ Ra	w	1,4 · 10-2	5,4 · 10-	1,4 · 10-3	1,6 · 10-3	
²²⁸ 88a	w	1,1 · 10-6	5,4 · 10-10	1,1 · 10-7	2,4 · 10 ⁻⁷	
²²⁶ Th	W Y	1,6 · 10-4 1,4 · 10-4	5,4 · 10-* 5,4 · 10-*	1,6 · 10-5 1,4 · 10-5	5,4 · 10-4	
²²⁷ Th	W Y	2,7 · 10- ⁷ 2,7 · 10- ⁷	1,4 · 10 ⁻¹⁰ 1,4 · 10 ⁻¹⁰	2,7 · 10-8 2,7 · 10-8	1,4 · 10-5	
²²⁸ Th	W	1,1 · 10-8 1,6 · 10-8	5,4 · 10 ⁻¹² 8,1 · 10 ⁻¹²	1,1 · 10-9 1,6 · 10-9	5,4 · 10-7	
²²⁹ ₉₀ Th	W Y	8,1 · 10-10 2,4 · 10-9	2,7 · 10-13 1,1 · 10-12	8,1 · 10 ⁻¹¹ 2,4 · 10 ⁻¹⁰	5,4 · 10-8	

		Trabajador	es expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Limites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Limites de incorporación anual por ingestión (**)	
		Ci	Ci m ⁻³	Ci	Ci	
1	2	3	4	5	6	
²³⁰ Th	w	5,4 · 10-9	2,7 · 10-12	5,4 · 10-10		
	Y	1,6 · 10-8	5.4 · 10-12	1,6 · 10-9	2,7 · 10- ⁷	
²³¹ ₉₀ Th	W Y	5,4 · 10-3 5,4 · 10-3	2,7 · 10-6 2,7 · 10-6	5,4 · 10-4 5,4 · 10-4	2,7 · 10-4	
	w	1,1 · 10-9	5,4 · 10-13	1,1 · 10-10		
90	Y	2,7 · 10-9	1,1 - 10-12	2,7 · 10-10	8,1 · 10-8	
²³⁴ ₉₀ Th	W Y	1,9 · 10-4 1,6 · 10-4	8,1 · 10-8 5,4 · 10-8	1,9 · 10-5 · 1,6 · 10-5	2,7 · 10- ⁵	
₉₀ Th-nat	W Y	1,9 · 10-9 5,4 · 10-9	1,1 · 10-12 1,9 · 10-12	1,9 · 10 ⁻¹⁰ 5,4 · 10 ⁻¹⁰	1,4 · 10-7	
²³⁰ 92U(***)	D W Y	5,4 · 10- ⁷ 2,7 · 10- ⁷ 2,7 · 10- ⁷	1,6 · 10-10 1,4 · 10-10 1,1 · 10-10	5,4 · 10-8 2,7 · 10-8 2,7 · 10-8	a) 2,7 · 10-7 b) 5,4 · 10-6	
²³¹ 92 ^{U(***)}	D W Y	8,1 · 10 ⁻³ 5,4 · 10 ⁻³ 5,4 · 10 ⁻³	2,7 · 10-6 2,4 · 10-6 1,9 · 10-6	8,1 · 10 ⁻⁴ 5,4 · 10 ⁻⁴ 5,4 · 10 ⁻⁴	5,4 · 10-4	
²³² U(***)	D W Y	2,2 · 10 ⁻⁷ 2,7 · 10 ⁻⁷ 8,1 · 10 ⁻⁹	8,1 · 10-11 1,6 · 10-10 2,7 · 10-12	2,2 · 10-8 2,7 · 10-8 8,1 · 10-10	a) 2,2 · 10 ⁻⁷ b) 5,4 · 10 ⁻⁶	
²³³ U(***)	D W Y	1,1 · 10-6 8,1 · 10-7 2,7 · 10-8	5,4 · 10-10 2,7 · 10-10 1,6 · 10-11	1,1 · 10- ⁷ 8,1 · 10- ⁸ 2,7 · 10- ⁹	a) 1,1 · 10-6 b) 1,9 · 10-5	

		Trabajador	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
	j	Ci	Ci m ⁻³	Ci	Ci
1	2	3	4	5	6
²³⁴ ₉₂ U(***)	D	1,4 · 10-6	5,4 · 10-10	1,4 · 10-7	
920(***)	W	8,1 · 10-7	2,7 · 10-10	8,1 · 10-8	
	Ÿ	2,7 · 10-8	1,6 · 10-11	2,7 · 10-9	
		- ,,,	-,-		a) 1,1 · 10-6
					b) 1,9 · 10-5
²³⁵ ₉₂ U(***)	D	1,4 · 10-6	5,4 · 10-10	1,4 · 10-7	
~~	w	8,1 · 10-7	2,7 · 10-10	8,1 · 10-8	
	Y	5,4 · 10-8	1,6 · 10-11	5,4 · 10-9	
					a) 1,4 · 10-6
					b) 1,9 · 10-5
²³⁶ ₉₂ U(***)	D	1,4 · 10-6	5,4 · 10-10	1,4 · 10-7	
-	w	8,1 · 10-7	2,7 · 10-10	8,1 · 10 ⁻⁸	
	Y	2,7 · 10-8	1,6 · 10-11	2,7 · 10-9	
					a) 1,4 · 10-6
					b) 2,2 · 10-5
²³⁷ ₉₂ U(***)	D	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4	
,	w	1,6 · 10-3	8,1 · 10-7	1,6 · 10-4	
	Y	1,6 · 10-3	5,4 · 10-7	1,6 · 10-4	
	:				1,6 · 10-4
²³⁸ ₉₈ U(***)	D	1,4 · 10-6	5,4 · 10-10	1,4 · 10-7	
,,	w	8,1 · 10-7	2,7 · 10-10	8,1 · 10-8	
	Y	5,4 · 10-8	1,9 · 10-11	5,4 · 10-9	
					a) 1,4 · 10-6
					b) 2,2 · 10-5
²³⁹ ₉₂ U(***)	D	1,9 · 10-1	8,1 · 10-5	1,9 · 10-2	
	w	1,6 · 10-1	8,1 · 10-5	1,6 · 10-2	
	Y	1,6 · 10-1	5,4 · 10-5	1,6 · 10-2	
					5,4 · 10-3
²⁴⁰ 92U(***)	D	2,7 · 10-3	1,6 · 10-6	2,7 · 10-4	
	w	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4	
	Y	2,4 · 10-3	1,1 · 10-6	2,4 · 10-4	
					1,4 · 10-4
92U-nat(***)	D	1,4 · 10-6	5,4 · 10-10	1,4 · 10-7	
	w	8,1 · 10-7	2,7 · 10-10	8,1 · 10-8	
	Y	2,7 · 10-8	1,6 · 10-11	2,7 · 10-9	
1				•	a) 1,4 · 10-6
	1		Ī		b) 1,9 · 10-5

		Trabajador	es expuestos	Público e	en general
Radionucleidos	Forma (**)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporació anual por ingestión (**)
		Ci	Ci m ⁻³	Ci	Ci
1	2	3	4	5	6
²³⁴ ₉₄ Pu	w	2,2 · 10-4	8,1 · 10-8	2,2 · 10-5	
	Y	1,9 · 10-4	8,1 · 10-8	1,9 · 10-5	8,1 · 10-4
²³⁵ ₉₄ Pu	W Y	2,7 · 10-0	1,4 · 10-3	2,7 · 10-1	
	Y	2,4 · 10-º	1,1 · 10-3	2,4 · 10-1	8,1 · 10-2
²³⁶ ₉₄ Pu	w	1,9 · 10-8	8,1 · 10-12	1,9 · 10-9	
	Y	2,7 · 10-8	1,6 · 10-11	2,7 · 10-9	
					a) 2,2 · 10-6 b) 1,6 · 10-5
²³⁷ ₉₄ Pu	w	2,7 · 10-3	1,4 · 10-6	2,7 · 10-4	
	Y	2,7 · 10-3	1,4 · 10-6	2,7 · 10-4	
					1,4 · 10-3
²³⁸ ₉₄ Pu	w	5,4 · 10-9	2,4 · 10-12	5,4 · 10-10	
	Y	1,6 · 10-8	8,1 · 10-12	1,6 · 10-9	
					a) 8,1 · 10 ⁻⁷ b) 8,1 · 10 ⁻⁶
²³⁹ ₉₄ Pu	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10-10	
	Y	1,4 · 10-8	5,4 · 10-12	1,4 · 10-9	
					a) 5,4 · 10 ⁻⁷ b) 5,4 · 10 ⁻⁶
²⁴⁰ ₉₄ Pu	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10 ⁻¹⁰	
	Y	1,4 · 10-8	5,4 · 10-12	1,4 · 10-9	
					a) 5,4 · 10 ⁻⁷ b) 5,4 · 10 ⁻⁶
²⁴¹ Pu	w	2,7 · 10-7	1,1 · 10-10	2,7 · 10-8	
	Y	5,4 · 10-7	2,7 · 10-10	5,4 · 10-8	
					a) 2,7 · 10-5 b) 2,7 · 10-4
²⁴² Pu	w	5,4 · 10-9	2,4 · 10-12	5,4 · 10 ⁻¹⁰	
	Y	1,6 · 10-8	5,4 / 10-12	1,6 · 10-9	
					a) 8,1 · 10-7 b) 8,1 · 10-6
²⁴³ Pu	w	2,7 · 10-2	1,4 · 10-5	2,7 · 10-3	
	Y	2,7 · 10-2	1,6 · 10-5	2,7 · 10-3	
					1,6 · 10-3

		Trabajadores expuestos		Público en general		
Radionucleidos	Fогта (*)	Límites de incorporación anual por inhalación	Limites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	anual por ingestión (**)	
		Ci	Ci m ⁻³	Ci	Ci	
1	2	3	4	5	6	
44 94 Pu	w	5,4 · 10-9	2,4 · 10-12	5,4 · 10-10		
, , , , , , , , , , , , , , , , , , , 	Y	1,6 · 10-8	5,4 · 10-12	1,6 · 10-9	a) 8,1 · 10-7 b) 8,1 · 10-6	
⁴⁵ Pu	W Y	5,4 · 10-3 5,4 · 10-3	1,9 · 10-6 1,6 · 10-6	5,4 · 10-4 5,4 · 10-4	2,2 · 10-4	
²³⁷ ₉₅ Am	w	2,7 · 10-1	1,1 · 10-4	2,7 · 10-2	8,1 · 10-3	
238 95 Am	w	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4	2,7 · 10-3	
²³⁹ ₉₅ Am	w	1,4 · 10-2	5,4 · 10-6	1,4 · 10-3	5,4 · 10-4	
²⁴⁰ ₉₅ Am	w	2,7 · 10-3	1,1 · 10-6	2,7 · 10-4	2,2 · 10-4	
²⁴¹ ₉₅ Am	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10-10	1,4 · 10-7	
^{242m} ₉₅ Am	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10-10	1,4 · 10-7	
²⁴² ₉₅ Am	w	8,1 · 10-5	2,7 · 10-8	8,1 · 10-6	5,4 · 10-4	
²⁴³ ₉₅ Am	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10-10	1,4 · 10-7	
^{244m} ₉₅ Am	w	2,7 · 10-3	1,6 · 10-6	2,7 · 10-4	5,4 · 10-3	
²⁴⁴ ₉₅ Am	w	1,6 · 10-4	8,1 · 10-8	1,6 · 10-5	2,7 · 10-4	
²⁴⁵ ₉₅ Am	w	8,1 · 10-2	2,7 · 10-5	8,1 · 10-3	2,7 · 10-3	
^{246m} ₉₅ Am	w	1,6 · 10-1	8,1 · 10-5	1,6 · 10-2	5,4 · 10-3	

		Trabajador	es expuentos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
	ļ	C i	Ci m ⁻³	Ci	Ci
1	2	3	4	5	6
²⁴⁶ ₉₅ Am	W	1,1 · 10-1	5,4 · 10-5	1,1 · 10-2	2,7 · 10-3
²³⁸ ₉₆ Cm	w	1,1 · 10-3	5,4 · 10-7	1,1 · 10-4	1,6 · 10-3
²⁴⁰ ₉₆ Cm	w	5,4 · 10-7	2,2 · 10-10	5,4 - 10-8	1,1 · 10-5
²⁴¹ ₉₆ Cm	w	2,4 · 10-5	1,1 - 10-8	2,4 · 10-6	1,4 · 10-4
²⁴² _% Cm	w	2,7 · 10-7	1,1 · 10-10	2,7 · 10-8	5,4 · 10-6
²⁴³ _% Cm	w	8,1 · 10-9	2,7 · 10-12	8,1 · 10-10	1,9 · 10-7
²⁴⁴ ₉₆ Cm	w	1,1 · 10-8	5,4 · 10-12	1,1 · 10-9	2,4 · 10 ⁻⁷
²⁴⁵ ₉₆ Cm	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10-10	1,4 · 10-7
²⁴⁶ ₉₆ Cm	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10-10	1,4 · 10-7
²⁴⁷ _% Cm	w	5,4 · 10-9	2,4 · 10-12	5,4 · 10-10	1,4 · 10-7
²⁴⁸ ₉₆ Cm	w	1,4 · 10-9	5,4 · 10-13	1,4 · 10-10	2,7 · 10-8
⁴⁹ ₉₆ Cm	w	1,4 · 10-²	5,4 · 10-6	1,4 · 10-3	5,4 10-3
²⁴⁴ ₉₈ Cf	W Y	5,4 · 10-4 5,4 · 10-4	2,4 · 10- ⁷ 2,4 · 10- ⁷	5,4 · 10-5 5,4 · 10-5	2,4 · 10-3
46 98 Cf	W Y	1,1 · 10-5 8,1 · 10-6	5,4 · 10-9 2,7 · 10-9	1,1 · 10-6 8,1 · 10-7	2,7 · 10-5

		Trabajador	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		Ci	Ci m ⁻³	Ci	Ci
1	2	3	4	5	6
²⁴⁸ 98Cf	w	8,1 · 10-8	2,7 · 10-11	8,1 · 10-9	
76 -	Y	1,1 · 10-7	5,4 · 10-11	1,1 · 10-8	
					2,2 · 10-6
249 98 Cf	w	5,4 · 10-9	2.2 · 10-12	5,4 · 10-10	
9801	Ϋ́	1,4 · 10-8	5,4 · 10-12	1,4 · 10-9	
		·			1,1 · 10-7
²⁵⁰ ₉₈ Cf	w	1,4 · 10-8	5,4 · 10-12	1,4 · 10-9	
980.	Y	2,7 · 10-8	1,1 10-11	2,7 · 10-9	ļ
	•		·		2,7 · 10-7
 ²⁵¹ Cf	w	5,4 · 10-9	2,2 · 10-12	5,4 · 10-10	
980.	Y	1,4 · 10-8	5,4 · 10-12	1,4 · 10-9	
					1,1 · 10-7
²⁵² 98Cf	w	2,7 · 10-8	1,1 · 10-11	2,7 · 10-9	
9801	Y	2,7 · 10-8	1,6 · 10-11	2,7 · 10-9	
					5,4 · 10-7
	w	1,9 · 10-6	8,1 · 10-10	1,9 · 10-7	
70	Y	1,6 · 10-6	8,1 · 10 ⁻¹⁰	1,6 · 10-7	
					5,4 · 10-5
²⁵⁴ Cf	w	2,2 · 10-8	1,1 · 10-11	2,2 · 10-9	
70	Y	1,6 · 10-8	8,1 · 10 ⁻¹²	1,6 · 10-9	
				1	2,7 · 10-7

^(*) Para la utilización de signos D (= dial), W (= semana), Y (=año), dirigirse al cuado i c.
(**) Respecto a (a) y (b) ver cuadro l d.
(***) Vista la toxicidad quimica de los compuestos solubles del uranic, la inhalación y la ingestión no deberán sobrepasar 2,5 mg y 150 mg respectivamente en un dia cualquiera que sea la composición isotópica.

CUADRO 1 c

Elemento	Forma	Compuestos				
₁ H	-	-				
₂₅ P	W D	Fosíatos Todos los demás compuestes				
₂₆ MN	W D	Oxidos, hidróxidos, halogenuros, nitratos Todos los demás compuestos				
₂₇ Co	Y W	Oxidos, hidróxidos, halogenuros, nitratos Todos los demás compuestos				
₃₆ Kr	-	-				
₃₈ Sr	Y D	SrTiO ₃ Compuestos solubles				
W D		Carburo Oxidos, hidróxidos, halogenuros, nitratos Todos los demás compuestos				
41Nb	Y W	Oxidos, hidróxidos Todos los demás compuestos				
₄₂ Mo	Y D	Oxidos, hidróxidos, MoS ₂ Todos los demás compuestos				
₅₂ Te	W D	Oxidos, hidroxidos, nitratos Todos los demás compuestos				
₅₃ I	D	Todos				
₅₅ Cs	D	Todos				
₅₈ Ce	Y W	Oxidos, hidróxidos, fluoruros Todos los demás compuestos				
₄ Po	W D	Oxidos, hidroxidos, nitratos Todos los demás compuestos				
8Ra	w	Todos				
₀ Th	Y W	Oxidos, hidróxidos Todos los demás compuestos				

Elemento	Forma	Compuestos		
₉₂ U	D	UF_6 , UO_2F_2 y UO_2 (NO_3) ₂		
7-	w	Menos soluble, tàles como UO ₃ , UF ₄ y UCI ₄		
	Y	Oxidos altamente insolubles UO ₂ y U ₃ O ₈		
94 Pu	Y	PuO ₂		
	w	Todos los demás compuestos		
95 A m	w	Todos los compuestos		
₉₆ Cm	w	Todos los compuestos		
98Cf	Y	Oxidos, hidróxidos		
~	w	Todos los demás compuestos		

CUADRO 1 d

Elemento	Compuestós			
₂₇ Co	(a) Oxidos, hidróxidos y todos los demás compuestos inorgánicos ingeridos en estado de residuos			
	(b) Complejos orgánicos y todos los compuestos inorgánicos, excepto óxidos e hidróxidos, en presencia de materiales portadores.			
₃₈ Sr	(a) Sales solubles			
	(b) SrTiO ₃			
42Mo	(a) Todos los compuestos, excepto MoS ₂			
	(b) MoS ₂			
₉₂ U	(a) Compuestos inorgánicos solubles en el agua (uranio hexavalente)			
	(b) Compuestos relativamente insolubles tales como UF ₄ , UO ₂ , y U ₃ O ₈			
₉₄ Pu	(a) Todos los compuestos, excepto óxidos e hidróxidos			
	(b) Óxidos e hidróxidos			

CUADRO 2

		Trabajadore	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		μCi	Ci/m ⁻³	μCi	μCi
1	2	3	4	5	6
Ве	soluble	1,4 · 10 ⁴	6 · 10-6	1,4 · 10 ³	1,4 · 10 ⁴
	insoluble	3,0 · 10 ³	1 · 10-6	3,0 · 10 ²	1,4 · 10 ³
⁴ ₆ C(Co₂)	soluble insoluble	8,7 · 10 ³	4 · 10-6	8,7 · 10 ²	6,6 · 10²
§F	soluble	1,3 · 10 ⁴	5 · 10-6	1,3 · 10 ³	6,6 · 10 ²
	insoluble	6,4 · 10 ³	3 · 10-6	6,4 · 10 ²	4,0 · 10 ²
¹² Na	soluble	4,3 · 10 ²	2 · 10- ⁷	4,3 · 10 ¹	3,2 · 10 ¹
	insoluble	2,1 · 10 ¹	9 · 10- ⁹	2,1	2,4 · 10 ¹
²⁴ Na	soluble	3,1 · 10 ³	1 · 10-6	3,1 · 10 ²	1,5 · 10 ²
	insoluble	3,6 · 10 ²	1 · 10-7	3,6 · 10 ¹	2,2 · 10 ¹
³¹ Si	soluble	1,4 · 10 ⁴	6 · 10-6	1,4 · 10 ³	7,0 · 10 ²
	insoluble	2,5 · 10 ³	1 · 10-6	2,5 · 10 ²	1,5 · 10 ²
35 ₈ S	soluble	6,8 · 10 ²	3 · 10 ⁻⁷	6,8 · 10¹	5,0 · 10 ¹
	insoluble	6,3 · 10 ²	3 · 10 ⁻⁷	6,3 · 10¹	2,2 · 10 ²
36	soluble	8,7 · 10 ²	4 · 10-7	8,7 · 10¹	6,6 · 10 ¹
17CI	insoluble	5,7 · 10 ¹	2 · 10-8	5,7	4,6 · 10 ¹
³⁸ C1	soluble	6,4 · 10 ³	3 · 10-6	6,4 · 10 ²	3,2 · 10 ²
	insoluble	5,1 · 10 ³	2 · 10-6	5,1 · 10 ²	3,2 · 10 ²
³⁷ ₁₈ Ar			6 · 10-3		
41 18 A r			2 · 10-6		
⁴² ₁₉ K	soluble	5,0 · 10 ³	2 · 10-6	5,0 · 10 ²	2,5 · 10 ²
	insoluble	2,7 · 10 ²	1 · 10-7	2,7 · 10 ¹	1,6 · 10 ¹
⁴⁵ ₂₀ Ca	soluble	8,0 · 10 ¹	3 · 10-8	8	7,3
	insoluble	3,0 · 10 ²	1 · 10-7	3,0 · 10 ¹	1,4 · 10 ²
⁴⁷ ₂₀ Ca	soluble	4,3 · 10 ²	2 · 10 ⁻⁷	4,3 · 10¹	4,0 · 10 ¹
	insoluble	4,2 · 10 ²	2 · 10 ⁻⁷	4,2 · 10¹	2,6 · 10 ¹
⁴⁶ ₂₁ Sc	soluble insoluble	6,0 · 10 ² 6,0 · 10 ¹	2 · 10 ⁻⁷ 2 · 10 ⁻⁸	6,0 · 10 ¹	3,0 · 10 ¹ 3,0 · 10 ¹
47 21 Sc	soluble insoluble	1,5 · 10 ³ 1,2 · 10 ³	6 · 10-7 5 · 10-7	1,5 · 10 ² 1,2 · 10 ²	7,1 · 10 ¹ 7,1 · 10 ¹
48 21 Sc	soluble insoluble	4,3 · 10 ² 3,5 · 10 ²	2 · 10-7 1 · 10-7	4,3 · 10 ¹ 3,5 · 10 ¹	2,2 · 10 ¹ 2,2 · 10 ¹
48 ₂₃ V	soluble	4,5 · 10 ²	2 · 10 ⁻⁷	4,5 · 10 ¹	2,3 · 10 ¹
	insoluble	1,4 · 10 ²	6 · 10 ⁻⁸	1,4 · 10 ¹	2,3 · 10 ¹
51 24 Cr	soluble insoluble	2,6 · 10 ⁴ 5,6 · 10 ³	1 · 10-5 2 · 10-6	2,6 · 10 ³ 5,6 · 10 ²	1,3 · 10 ³ 1,2 · 10 ³

		Trabajador	es expuestos	Público en general	
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		μCi	Ci/m ⁻³	μCi	μCi
1	2	3	4	5	6
55 ₂₆ Fe	soluble	2,1 · 10³	9 · 10-7	2,1 · 10 ²	6,3 · 10 ²
	insoluble	2,6 · 10³	1 · 10-6	2,6 · 10 ²	1,8 · 10 ³
⁵⁹ Fe	soluble	3,7 · 10 ²	1 · 10-7	3,7 · 10 ¹	4,7 · 10 ¹
	insoluble	1,3 · 10 ²	5 · 10-8	1,3 · 10 ¹	4,2 · 10 ¹
⁵⁹ Ni	soluble	1,2 · 10³	5 · 10-7	1,2 · 10 ²	1,6 · 10 ²
	insoluble	1,9 · 10³	8 · 10-7	1,9 · 10 ²	1,6 · 10 ³
⁶³ Ni	soluble	1,6 · 10 ²	6 · 10-8	1,6 · 10 ¹	2,2 · 10 ¹
	insoluble	7,0 · 10 ²	3 · 10-7	7,0 · 10 ¹	5,7 · 10 ²
⁶⁵ ₂₈ Ni	soluble	2,3 · 10 ³	9 · 10-7	2,3 · 10 ²	1,1 · 10 ²
	insoluble	1,3 · 10 ³	5 · 10-7	1,3 · 10 ²	8,0 · 10 ¹
64 29 Cu	soluble insoluble	5,3 · 10 ³ 2,6 · 10 ³	2 · 10-6 1 · 10-6	5,3 · 10 ² 2,6 · 10 ²	2,6 · 10 ² 1,7 · 10 ²
⁶⁵ Zn	soluble	2,6 · 10 ²	1 · 10- ⁷	2,6 · 10 ¹	7,9 · 10 ¹
	insoluble	1,5 · 10 ²	6 · 10- ⁸	1,5 · 10 ¹	1,4 · 10 ²
^{69m} Zn	soluble	9,5 · 10 ²	4 · 10-7	9,5 · 10 ¹	5,4 · 10¹
	insoluble	8,0 · 10 ²	3 · 10-7	8,0 · 10 ¹	4,9 · 10¹
⁶⁹ Zπ	soluble	1,8 · 10 ⁴	7 · 10-6	1,8 · 10 ³	1,4 · 10 ³
	insoluble	2,3 · 10 ⁴	9 · 10-6	2,3 · 10 ³	1,4 · 10 ³
⁷² Ga	soluble	5,9 · 10 ²	2 · 10-7	5,9 · 10 ¹	3,0 · 10 ¹
	insoluble	4,7 · 10 ²	2 · 10-7	4,7 · 10 ¹	3,0 · 10 ¹
71 32 Ge	soluble insoluble	2,6 · 10 ⁴ 1,6 · 10 ⁴	1 · 10-5 6 · 10-6	2,6 · 10 ³ 1,6 · 10 ³	1,3 · 10 ³ 1,3 · 10 ³
⁷³ As	soluble	5,1 · 10 ³	2 · 10-6	5,1 · 10 ²	3,8 · 10 ²
	insoluble	9,5 · 10 ²	4 · 10-7	9,5 · 10 ¹	3,7 · 10 ²
74 33 As	soluble insoluble	8,7 · 10 ² 3,1 · 10 ²	3 · 10-7 1 · 10-7	8,7 · 10 ¹ 3,1 · 10 ¹	4,2 · 10 ¹ 4,2 · 10 ¹
76 33 As	soluble insoluble	3,2 · 10 ² 2,5 · 10 ²	1 · 10-7 1 · 10-7	3,2 · 10 ¹ 2,5 · 10 ¹	1,6 · 10 ¹ 1,5 · 10 ¹
77	soluble	1,3 · 10 ³	5 · 10- ⁷	1,3 · 10 ²	6,6 · 10 ¹
33 A s	insoluble	1,0 · 10 ³	4 · 10- ⁷	1,0 · 10 ²	6,4 · 10 ¹
\$Se	soluble	3,1 · 10 ³	1 · 10·6	3,1 · 10 ²	2,4 · 10 ²
	insoluble	3,1 · 10 ²	1 · 10·7	3,1 · 10 ¹	2,2 · 10 ²
¹² ₅ Br	soluble	2,8 · 10 ³	1 · 10-6	2,8 · 10 ²	2,1 · 10 ²
	insoluble	4,7 · 10 ²	2 · 10-7	4,7 · 10 ¹	3,0 · 10 ¹
⁶ ∕ ₇ Rb	soluble	7,1 · 10 ²	3 · 10- ⁷	7,1 · 10 ¹	5,4 · 10 ¹
	insoluble	1,7 · 10 ²	7 · 10- ⁸	1,7 · 10 ¹	1,9 · 10 ¹
9Y	soluble	3,2 · 10 ²	1 · 10-7	3,2 · 10 ¹	1,6 · 10 ¹
	insoluble	2,6 · 10 ²	1 · 10-7	2,6 · 10 ¹	1,6 · 10 ¹
^{1m} Y	soluble	5,5 · 10 ⁴	2 · 10-5	5,5 · 10 ³	2,7 · 10 ³
	insoluble	4,3 · 10 ⁴	2 · 10-5	4,3 · 10 ³	2,7 · 10 ³
Y Y	soluble	8,7 · 10 ^t	4 · 10-8	8,7	2,1 · 10 ¹
	insoluble	8,0 · 10 ^t	3 · 10-8	8,0	2,1 · 10 ¹

		Trabajadore	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		μ Ci	Ci/m ⁻³	μCi	μCi
1	2	3	4	5	6
² 9Y	soluble	9,5 · 10 ²	4 · 10-7	9,5 · 10 ¹	4,6 · 10¹
	insoluble	7,3 · 10 ²	3 · 10-7	7,3 · 10 ¹	4,6 · 10¹
³ Y	soluble	4,3 · 10 ²	2 · 10-7	4,3 · 10 ¹	2,2 · 10 ¹
	insoluble	3,4 · 10 ²	1 · 10-7	3,4 · 10 ¹	2,2 · 10 ¹
^{6m} Tc	soluble	1,9 · 10 ⁵	8 · 10-5	1,9 · 10 ⁴	9,6 · 10 ³
	insoluble	7,3 · 10 ⁴	3 · 10-5	7,3 · 10 ³	8,0 · 10 ³
%Tc	soluble	1,6 · 10 ³	6 · 10 ⁻⁷	1,6 · 10 ²	7,8 · 10 ¹
	insoluble	6,0 · 10 ²	2 · 10 ⁻⁷	6,0 · 10 ¹	3,8 · 10 ¹
^{77m} Tc	soluble	5,8 · 10 ³	2 · 10-6	5,8 · 10 ²	2,8 · 10 ²
	insoluble	3,8 · 10 ²	2 · 10-7	3,8 · 10 ¹	1,4 · 10 ²
²⁷ Tc	soluble	2,7 · 10 ⁴	1 · 10-5	2,7 · 10 ³	1,4 · 10 ³
	insoluble	7,3 · 10 ²	3 · 10-7	7,3 · 10 ¹	6,4 · 10 ²
^{99m} Tc	soluble	9,5 · 10 ⁴	4 · 10-5	9,5 · 10 ³	4,6 · 10 ³
	insoluble	3,5 · 10 ⁴	1 · 10-5	3,5 · 10 ³	2,2 · 10 ³
⁹⁹ Тс	soluble	5,3 · 10 ³	2 · 10-6	5,3 · 10 ²	2,6 · 10 ²
	insoluble	1,5 · 10 ²	6 · 10-8	1,5 · 10 ¹	1,3 · 10 ²
⁹⁷ Ru	soluble	5,8 · 10 ³	2 · 10-6	5,8 · 10 ²	2,9 · 10 ²
	insoluble	4,4 · 10 ³	2 · 10-6	4,4 · 10 ²	2,8 · 10 ²
¹⁰³ ₄₄ Ru	soluble	1,3 · 10 ³	5 · 10 ⁻⁷	1,3 · 10 ²	6,6 · 10 ¹
	insoluble	2,1 · 10 ²	8 · 10 ⁻⁸	2,1 · 10 ¹	6,4 · 10 ¹
¹⁰⁵ ₄₄ Ru	soluble	1,8 · 10 ³	7 · 10-7	1,8 · 10 ²	8,8 · 10 ¹
	insoluble	1,3 · 10 ³	5 · 10-7	1,3 · 10 ²	8,0 · 10 ¹
¹⁰⁶ ₄₄ Ru	soluble	1,9 · 10 ²	8 · 10-8	1,9 · 10 ¹	9,6
	insoluble	1,4 · 10 ¹	6 · 10-9	1,4	9,6
^{103m} Rh	soluble	1,9 · 10 ⁵	8 · 10-5	1,9 · 10 ⁴	9,6 · 10 ³
	insoluble	1,5 · 10 ⁵	6 · 10-5	1,5 · 10 ⁴	9,6 · 10 ³
¹⁰⁵ ₄₅ Rh	soluble	2,1 · 10 ³	8 · 10-7	2,1 · 10 ²	1,0 · 10 ²
	insoluble	1,3 · 10 ³	5 · 10-7	1,3 · 10 ²	8,0 · 10 ¹
¹⁰³ ₄₆ Pd	soluble	3,4 · 10 ³	1 · 10-6	3,4 · 10 ²	2,7 · 10 ²
	insoluble	1,9 · 10 ³	7 · 10-7	1,9 · 10 ²	2,2 · 10 ²
¹⁰⁹ ₄₆ Pd	soluble	1,4 · 10 ³	6 · 10-7	1,4 · 10 ²	7,0 · 10 ¹
	insoluble	8,7 · 10 ²	4 · 10-7	8,7 · 10 ¹	5,6 · 10 ¹
¹⁰⁵ ₄₇ Ag	soluble	1,5 · 10 ³	6 · 10 ⁻⁷	1,5 · 10 ²	7,8 · 10 ¹
	insoluble	2,0 · 10 ²	8 · 10 ⁻⁸	2,0 · 10 ¹	7,7 · 10 ¹
110m	soluble	4,8 · 10 ²	2 · 10 ⁻⁷	4,8 · 10¹	2,4 · 10 ¹
47 Ag	insoluble	2,6 · 10 ¹	1 · 10 ⁻⁸	2,6	2,4 · 10 ¹
111 Ag	soluble	7,1 · 10 ²	3 · 10-7	7,1 · 10 ¹	3,5 · 10 ¹
	insoluble	5,5 · 10 ²	2 · 10-7	5,5 · 10 ¹	3,4 · 10 ¹
¹⁰⁹ Cd	soluble	1,3 · 10 ²	5 · 10 ⁻⁸	1,3 · 10 ¹	1,4 · 10 ²
	insoluble	1,8 · 10 ²	7 · 10 ⁻⁸	1,8 · 10 ¹	1,4 · 10 ²
115m	soluble	8,7 · 10 ¹	4 · 10-8	8,7	2,0 · 10 ¹
48 Cd	insoluble	8,7 · 10 ¹	4 · 10-8	8,7	2,0 · 10 ¹

		Trabajador	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		μCi	Ci/m ⁻³	μCi	μCi
1	2	3	4	5	6
¹¹⁵ Cd	soluble	5,5 · 10 ²	2 · 10-7	5,5 · 10 ¹	2,7 · 10 ¹
	insoluble	4,6 · 10 ²	2 · 10-7	4,6 · 10 ¹	2,9 · 10 ¹
^{113m} In	soluble	2,1 · 10 ⁴	8 · 10-6	2,1 · 10 ³	1,0 · 10 ³
	insoluble	1,7 · 10 ⁴	7 · 10-6	1,7 · 10 ³	1,0 · 10 ³
^{114m} ₄₉ In	soluble	2,6 · 10 ²	1 · 10-7	2,6 · 10 ¹	1,4 · 10 ¹
	insoluble	5,4 · 10 ¹	2 · 10-8	5,4	1,4 · 10 ¹
^{115m} ₄₉ In	soluble	5,9 · 10 ³	2 · 10-6	5,9 · 10 ²	3,0 · 10 ²
	insoluble	4,7 · 10 ³	2 · 10-6	4,7 · 10 ²	3,0 · 10 ²
¹¹³ ₅₀ Sn	soluble	8,7 · 10 ²	4 · 10-7	8,7 · 10 ¹	6,8 · 10 ¹
	insoluble	1,3 · 10 ²	5 · 10-8	1,3 · 10 ¹	6,5 · 10 ¹
¹²⁵ ₅₀ Sn	soluble	2,9 · 10 ²	1 · 10-7	2,9 · 10 ¹	1,4 · 10 ¹
	insoluble	2,1 · 10 ²	8 · 10-8	2,1 · 10 ¹	1,4 · 10 ¹
¹²² ₅₁ Sb	soluble	4,7 · 10 ²	2 · 10 ⁻⁷	4,7 · 10 ¹	2,3 · 10 ¹
	insoluble	3,6 · 10 ²	1 · 10 ⁻⁷	3,6 · 10 ¹	2,3 · 10 ¹
124	soluble	3,7 · 10 ²	2 · 10 ⁻⁷	3,7 · 10 ¹	1,8 · 10 ¹
51 S b	insoluble	4,8 · 10 ¹	2 · 10 ⁻⁸	4,8	1.8 · 10 ¹
¹²⁵ ₅₁ Sb	soluble	1,3 · 10 ³	5 · 10- ⁷	1,3 · 10 ²	8,0 · 10 ¹
	insoluble	6,6 · 10 ¹	3 · 10- ⁸	6,6	7,9 · 10 ¹
^{131m} Xe			2 · 10-5		7,5 10
¹³³ ₅₄ Xe			1 · 10-5	- , , , ,	
¹³⁵ ₅₄ Xe			4 · 10-6		
¹³¹ ₅₆ Ba	soluble	2,9 · 10 ³	1 · 10-6	2,9 · 10 ²	1,4 · 10 ²
	insoluble	8,7 · 10 ²	4 · 10-7	8,7 · 10 ¹	· 1,4 · 10 ²
¹⁴⁰ ₅₆ Ba	soluble	3,2 · 10 ²	1 · 10-7	3,2 · 10 ¹	2,1 · 10 ¹
	insoluble	1,1 · 10 ²	4 · 10-8	1,1 · 10 ¹	2,0 · 10 ¹
140	soluble	3,9 · 10 ²	2 · 10-7	3,9 · 10 ¹	1,9 · 10 ¹
57La	insoluble	3,1 · 10 ²	1 · 10-7	3,1 · 10 ¹	1,9 · 10 ¹
¹⁴² ₅₉ Pr	soluble	4,8 · 10 ²	2 · 10-7	4,8 · 10 ¹	2,4 · 10 ¹
	insoluble	3,9 · 10 ²	2 · 10-7	3,9 · 10 ¹	2,4 · 10 ¹
⁴³ ₅₉ Pr	soluble	8,0 · 10 ²	3 · 10-7	8,0 · 10 ¹	3.9 · 10 ¹
	insoluble	4,4 · 10 ²	2 · 10-7	4,4 · 10 ¹	3.9 · 10 ¹
⁴⁷ ₆₀ Nd	soluble	8,7 · 10 ²	4 · 10-7	8,7 · 10 ¹	4,9 · 10 ¹
	insoluble	5,7 · 10 ²	2 · 10-7	5,7 · 10 ¹	4,9 · 10 ¹
⁴⁹ ₆₀ Nd	soluble	4,5 · 10 ³	2 · 10-6	4,5 · 10 ²	2,2 · 10 ²
	insoluble	3,6 · 10 ³	1 · 10-6	3,6 · 10 ²	2,2 · 10 ²
⁴⁷ ₆₁ Pm	soluble	1,6 · 10 ²	6 · 10-8	1,6 · 10 ¹	1,8 · 10 ²
	insoluble	2,4 · 10 ²	1 · 10-7	2,4 · 10 ¹	1,8 · 10 ²
⁴⁹ ₆₁ Pm	soluble	7,1 · 10 ²	3 · 10-7	7,1 · 10 ¹	3,5 · 10 ¹
	insoluble	5,6 · 10 ²	2 · 10-7	5,6 · 10 ¹	3,5 · 10 ¹

		Trabajadore	es expuestos	Público e	n general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		μCi	Ci/m ⁻³	μCi	μCi
1	2	3	4	5	6
SilSm	soluble	1,6 · 10 ²	6 · 10-8	1,6 · 10 ¹	3,0 · 10 ²
	insoluble	3,5 · 10 ²	1 · 10-7	3,5 · 10 ¹	3,0 · 10 ²
53	soluble	1,2 · 10 ³	5 · 10-7	1,2 · 10 ²	6,2 · 10 ¹
Sm	insoluble	1,0 · 10 ³	4 · 10-7	1,0 · 10 ²	6,2 · 10 ¹
^{52m} Eu	soluble	1,0 · 10 ³	4 · 10 ⁻⁷	1,0 · 10 ²	5,0 · 10 ¹
	insoluble	3,0 · 10 ²	3 · 10 ⁻⁷	8,0 · 10 ¹	5,0 · 10 ¹
⁵² Eu	soluble	3,1 · 10 ¹	1 · 10 ⁻⁸	3,1	6,1 · 10 ¹
	insoluble	4,6 · 10 ¹	2 · 10 ⁻⁸	4,6	6,1 · 10 ¹
⁵⁴ ₆₃ Eu	soluble	9,5	4 · 10-9	9,5 · 10 ¹	1,8 · 10 ¹
	insoluble	1,8 · 10 ¹	7 · 10-9	1,8	1,8 · 10 ¹
⁵⁵ ₆₃ Eu	soluble	2,3 · 10 ²	9 · 10-8	2,3 · 10¹	1,6 · 10 ²
	insoluble	1,8 · 10 ²	7 · 10-8	1,8 · 10¹	1,6 · 10 ²
⁵³ Gd	soluble	5,6 · 10 ²	2 · 10-7	5,6 · 10 ¹	1,7 · 10 ²
	insoluble	2,3 · 10 ²	9 · 10-8	2,3 · 10 ¹	1,7 · 10 ²
⁵⁹ Gd	soluble	1,2 · 10 ³	5 · 10-7	1,2 · 10 ²	6,2 · 10 ¹
	insoluble	1,0 · 10 ³	4 · 10-7	1,0 · 10 ²	6,2 · 10 ¹
¹⁶⁰ Tb	soluble	2,5 · 10 ²	1 · 10-7	2,5 · 10 ¹	3,5 · 10 ¹
	insoluble	8,0 · 10 ¹	3 · 10-8	8,0	3,6 · 10 ¹
¹⁶⁵ ₆₆ Dy	soluble	6,4 · 10 ³	3 · 10-6	6,4 · 10 ²	3,2 · 10 ²
	insoluble	5,2 · 10 ³	2 · 10-6	5,2 · 10 ²	3,2 · 10 ²
¹⁶⁶ 60y	soluble	6,1 · 10 ²	2 · 10-7	6,1 · 10 ¹	3,0 · 10 ¹
	insoluble	4,9 · 10 ²	2 · 10-7	4,9 · 10 ¹	3,0 · 10 ¹
¹⁶⁶ ₆₇ Ho	soluble	5,0 · 10 ²	2 · 10 ⁻⁷	5,0 · 10 ¹	2,5 · 10 ¹
	insoluble	4,1 · 10 ²	2 · 10 ⁻⁷	4,1 · 10 ¹	2,5 · 10 ¹
¹⁶⁹ ₆₈ As	soluble	1,5 · 10 ³	6 · 10 ⁻⁷	1,5 · 10 ²	7,4 · 10 ¹
	insoluble	9,5 · 10 ²	4 · 10 ⁻⁷	9,5 · 10 ¹	7,4 · 10 ¹
¹⁷¹ ₆₈ Er	soluble	1,8 · 10 ³	7 · 10 ⁻⁷	1,8 · 10 ²	8,8 · 10 ¹
	insoluble	1,5 · 10 ³	6 · 10 ⁻⁷	1,5 · 10 ²	8,8 · 10 ¹
¹⁷⁰ ₆₉ Tm	soluble	8,7 · 10 ¹	4 · 10 ⁻⁸	8,7	3,7 · 10 ¹
	insoluble	8,7 · 10 ¹	3 · 10 ⁻⁸	8,7	3,7 · 10 ¹
¹⁷¹ ₆₉ Tm	soluble insoluble	2,8 · 10 ² 5,8 · 10 ²	1 · 10 ⁻⁷ 2 · 10 ⁻⁷	2,8 · 10 ¹ 5,8 · 10 ¹	4,1 · 10 ² 4,1 · 10 ²
¹⁷⁵ ₇₀ Yb	soluble	1,8 · 10 ³	7 · 10-7	1,8 · 10 ²	8,8 · 10 ¹
	insoluble	1,5 · 10 ³	6 · 10-7	1,5 · 10 ²	8,8 · 10 ¹
¹⁷⁷ ₇₁ Lu	soluble	1,6 · 10 ³	6 · 10-7	1,6 · 10 ²	8,0 · 10 ¹
	insoluble	1,3 · 10 ³	6 · 10-7	1,6 · 10 ²	8,0 · 10 ¹
¹⁸¹ ₇₂ Hf	soluble	9,5 · 10¹	4 · 10-8	9,5	5,6 · 10 ¹
	insoluble	1,8 · 10²	7 · 10-8	1,8 · 10 ¹	5,6 · 10 ¹
¹⁸² ₇₃ Ta	soluble	9,5 · 10 ¹	4 · 10 ⁻⁸	9,5	3,2 · 10 ¹
	insoluble	5,5 · 10 ¹	2 · 10 ⁻⁸	5,5	3,2 · 10 ¹
¹⁸¹ W	soluble	5,8 · 10 ³	2 · 10-6	5,8 · 10 ²	2,6 · 10 ²
	insoluble	3,1 · 10 ²	1 · 10-7	3,1 · 10 ¹	2,6 · 10 ²

	1	Trabajadore	es expuestos	Público en general		
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Limites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)	
		μCi	Ci/m ⁻³	μCi	μCi	
1	2	3	4	5	6	
85	soluble	1,9 · 10 ³	8 · 10- ⁷	1,9 · 10 ²	9,6 · 10 ¹	
74	insoluble	2,8 · 10 ²	1 · 10- ⁷	2,8 · 10 ¹	8,8 · 10 ¹	
87	soluble	1,1 · 10 ³	4 · 10 ⁻⁷	1,1 · 10 ²	5,4 · 10 ¹	
74	insoluble	8,0 · 10 ²	3 · 10 ⁻⁷	8,0 · 10 ¹	5,0 · 10 ¹	
83 75 Re	soluble insoluble	6,4 · 10 ³ 3,9 · 10 ²	3 · 10-6 2 · 10-7	6,4 · 10 ² 3,9 · 10 ¹	4,5 · 10 ² 2,2 · 10 ²	
86 75 Re	soluble insoluble	1,5 · 10³ 6,0 · 10²	6 · 10-7 2 · 10-7	1,5 · 10 ² 6,0 · 10 ¹	7,4 · 10 ¹ 3,8 · 10 ¹	
88	soluble	1,0 · 10 ³	4 · 10-7	1,0 · 10 ²	5,0 · 10 ¹	
75Re	insoluble	4,0 · 10 ²	2 · 10-7	4,0 · 10 ¹	2,5 · 10 ¹	
85 ₇₆ Os	soluble	1,2 · 10 ³	5 · 10-7	1,2 · 10 ²	5,9 · 10 ¹	
	insoluble	1,2 · 10 ²	5 · 10-8	1,2 · 10 ¹	5,3 · 10 ¹	
^{91m} ₇₆ Os	soluble	4,0 · 10 ⁴	2 · 10-5	4,0 · 10 ³	2,0 · 10 ³	
	insoluble	2,3 · 10 ⁴	9 · 10-6	2,3 · 10 ³	1,9 · 10 ³	
¹⁹¹ ₇₆ Os	soluble	2,7 · 10 ³	1 · 10-6	2,7 · 10 ²	1,4 · 10 ²	
	insoluble	1,0 · 10 ³	4 · 10-7	1,0 · 10 ²	1,3 · 10 ²	
¹⁹³ ₇₆ Os	soluble	9,5 · 10 ²	4 · 10-7	9,5 · 10 ¹	4,7 · 10 ¹	
	insoluble	6,8 · 10 ²	3 · 10-7	6,8 · 10 ¹	4,2 · 10 ¹	
190	soluble	3,2 · 10 ³	1 · 10-6	3,2 · 10 ²	1,6 · 10 ²	
77	insoluble	1,0 · 10 ³	4 · 10-7	1,0 · 10 ²	1,4 · 10 ²	
192 77 1r	soluble insoluble	3,1 · 10 ² 6,4 · 10 ¹	1 · 10-7 3 · 10-8	3,1 · 10 ¹ 6,4	3,2 · 10 ¹ 3,0 · 10 ¹	
194	soluble	5,5 · 10 ²	2 · 10-7	5,5 · 10 ¹	2,7 · 10 ¹	
77 I r	insoluble	3,9 · 10 ²	2 · 10-7	3,9 · 10 ¹	2,4 · 10 ¹	
¹⁹¹ ₇₈ Pt	soluble	1,9 · 10³	8 · 10-7	1,9 · 10 ²	9,6 · 10 ¹	
	insoluble	1,4 · 10³	6 · 10-7	1,4 · 10 ²	8,8 · 10 ¹	
^{193m} Pt	soluble	1,8 · 10 ⁴	7 · 10-6	1,8 · 10 ³	8,8 · 10 ²	
	insoluble	1,3 · 10 ⁴	5 · 10-6	1,3 · 10 ³	8,0 · 10 ²	
¹⁹³ ₇₈ Pt	soluble	2,6 · 10 ³	1 · 10-6	2,6 · 10 ²	7,5 · 10 ²	
	insoluble	8,0 · 10 ²	3 · 10-7	8,0 · 10 ¹	1,2 · 10 ³	
^{197m} Pt	soluble	1,6 · 10 ⁴	6 · 10-6	1,6 · 10 ³	8,0 · 10 ²	
	insoluble	1,2 · 10 ⁴	5 · 10-6	1,2 · 10 ³	7,4 · 10 ²	
¹⁹⁷ ₇₈ Pt	soluble	1,9 · 10 ³	8 · 10-7	1,9 · 10 ²	9,6 · 10 ¹	
	insoluble	1,4 · 10 ³	6 · 10-7	1,4 · 10 ²	8,8 · 10 ¹	
¹⁹⁶ 79Au	soluble	2,6 · 10 ³	1 · 10-6	2,6 · 10 ²	1,3 · 10 ²	
	insoluble	1,5 · 10 ³	6 · 10-7	1,5 · 10 ²	1,2 · 10 ²	
¹⁹⁸ 79Au	soluble	8,0 · 10 ²	3 · 10 ⁻⁷	8,0 · 10 ¹	4,1 · 10 ¹	
	insoluble	5,9 · 10 ²	2 · 10 ⁻⁷	5,9 · 10 ¹	3,7 · 10 ¹	
¹⁹⁹ ₇₉ Au	soluble	2,7 · 10 ³	1 · 10-6	2,7 · 10 ²	1,4 · 10 ²	
	insoluble	2,0 · 10 ³	8 · 10-7	2,0 · 10 ²	1,3 · 10 ²	
^{197m} Hg	soluble	1,8 · 10 ³	7 · 10-7	1,8 · 10 ²	1,5 · 10 ²	
	insoluble	2,1 · 10 ³	8 · 10-7	2,1 · 10 ²	1,4 · 10 ²	

•		Trabajadore	es expuestos	Público e	n general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		μCi	Ci/m ⁻³	μCi	μCi
1	2	. 3	4	5	6
¹⁹⁷ 80Hg	soluble	2,9 · 10 ³	1 · 10-6	2,9 · 10 ²	2,4 · 10 ²
	insoluble	6,2 · 10 ³	3 · 10-6	6,2 · 10 ²	3,9 · 10 ²
²⁰³ Hg	soluble	1,8 · 10 ²	7 · 10-8	1,8 · 10 ¹	1,4 · 10¹
	insoluble	3,1 · 10 ²	1 · 10-7	3,1 · 10 ¹	8,8 · 10¹
²⁰⁰ 81	soluble insoluble	6,6 · 10 ³ _ 2,8 · 10 ³	3 · 10-6 1 · 10-6	6,6 · 10 ² 2,8 · 10 ²	3,5 · 10 ² 1,8 · 10 ²
²⁰¹ 81	soluble	5,0 · 10 ³	2 · 10-6	5,0 · 10 ²	2,5 · 10 ²
	insoluble	2,2 · 10 ³	9 · 10-7	2,2 · 10 ²	1,4 · 10 ²
²⁰² 81Tl	soluble	1,9 · 10 ³	8 · 10-7	1,9 · 10 ²	9,6 · 10 ¹
	insoluble	6,0 · 10 ²	2 · 10-7	6,0 · 10 ¹	5,6 · 10 ¹
²⁰⁴ Tl	soluble	1,5 · 10 ³	6 · 10-7	1,5 · 10 ²	8,8 · 10 ¹
	insoluble	6,6 · 10 ¹	3 · 10-8	6,6	4,9 · 10 ¹
²⁰³ ₈₂ Pb	soluble	6,3 · 10 ³	3 · 10-6	6,3 · 10 ²	3,1 · 10 ²
	insoluble	4,5 · 10 ³	2 · 10-6	4,5 · 10 ²	2,8 · 10 ²
²¹⁰ ₈₂ Pb	soluble	3,1 · 10-1	1 · 10-10	3,1 · 10 ⁻²	9,6 · 10 ⁻²
	insoluble	6,0 · 10-1	2 · 10-10	6,0 · 10 ⁻²	1,4 · 10 ²
²¹² ₈₂ Pb	soluble	4,4 · 10 ¹	2 · 10 ⁻⁸	4,4	1,5 · 10 ¹
	insoluble	4,8 · 10 ¹	2 · 10 ⁻⁸	4,8	1,4 · 10 ¹
²⁰⁶ 83Bi	soluble	4,7 · 10 ²	2 · 10-7	4,7 · 10 ¹	3,0 · 10 ¹
	insoluble	3,6 · 10 ²	1 · 10-7	3,6 · 10 ¹	3,0 · 10 ¹
²⁰⁷ ₈₃ Bi	soluble	4,2 · 10 ²	2 · 10 ⁻⁷	4,2 · 10 ¹	5,1 · 10 ¹
	insoluble	3,4 · 10 ¹	1 · 10 ⁻⁸	3,4	5,0 · 10 ¹
²¹⁰ ₈₃ Bi	soluble	1,6 · 10 ¹	6 · 10-9	1,6	3,3 · 10 ¹
	insoluble	1,5 · 10 ¹	6 · 10-9	1,5	3,3 · 10 ¹
²¹² ₈₃ Bi	soluble	2,4 · 10 ²	1 · 10 ⁻⁷	2,4 · 10 ¹	2,8 · 10 ²
	insoluble	5,0 · 10 ²	2 · 10 ⁻⁷	5,0 · 10 ¹	2,8 · 10 ²
²¹¹ ₈₅ At(*)	soluble	1,8 · 10 ¹	7 · 10-9	1,8	1,4
	insoluble	8,7 · 10 ¹	3 · 10-8	8,7	5,8 · 10 ¹
²²⁰ ₈₆ Rn(**)		7,3 · 10 ²	3 · 10-7	7,3 · 101	-
²²² ₈₆ Rn(**)		7,3 · 10²	3 · 10-7	7,3 · 101	_
²²⁷ ₈₉ Ac	soluble	5,8 · 10-3	2 · 10 ⁻¹²	5,8 · 10 ⁻⁴	1,5
	insoluble	6,5 · 10-2	3 · 10 ⁻¹¹	6,5 · 10 ⁻³	2,4 · 10 ²
²²⁸ ₈₉ Ac	soluble	1,9 · 10 ²	8 · 10-8	1,9 · 10¹	7,0 · 10 ¹
	insoluble	4,2 · 10 ¹	2 · 10-8	4,2	7,0 · 10 ¹
²³⁰ ₉₁ Pa	soluble	4,2	2 · 10-9	4,2 · 10 ⁻¹	1,9 · 10 ²
	insoluble	2,0	8 · 10-10	2,0 · 10 ⁻¹	2,0 · 10 ²

^(*) Válido únicamente para las personas que hayan alcanzado o sobrepasado los 16 años.

^(**) Se supone que los productos de filiación del $\frac{220}{86}$ Rh y del $\frac{222}{86}$ Rn existen en la misma proporción que en el aire no filtrado. Para todos los demás isótopos, los productos de filiación no se considerán presentes en las cantidades absorbidas; si he hubiere comprobado su presencia, habrá que aplicarles las reglas relativas a las mezclas (ver apartado 2).

		Trabajador	es expuestos	Público e	en general
Radionucleidos	Forma (*)	Límites de incorporación anual por inhalación	Límites derivados de concentración en el aire para una exposición de 2 000 h/año	Límites de incorporación anual por inhalación	Límites de incorporación anual por ingestión (**)
		μ Ci	Ci/m ⁻³	μ Ci	μCi
1	2	3	4	5	6
²³¹ 91Pa	soluble	2,8 · 10-3	1 · 10 ⁻¹²	2,8 · 10-4	7,0 · 10-1
	insoluble	2,7 · 10-1	1 · 10 ⁻¹⁰	2,7 · 10-2	2,2 · 10 ¹
²³³ ₉₁ Pa	soluble	1,5 · 10 ³	6 · 10-7	1,5 · 10 ²	9,6 · 10 ¹
	insoluble	4,4 · 10 ²	2 · 10-7	4,4 · 10 ¹	9,6 · 10 ¹
²³⁷ ₉₃ Np	soluble	1,0 · 10-2	4 · 10-12	1,0 · 10-3	2,5
	insoluble	3,0 · 10-1	4 · 10-10	3,0 · 10-2	2,8 · 10 ¹
²³⁹ ₉₃ Np	soluble	2,1 · 10 ³	8 · 10- ⁷	2,1 · 10 ²	1,0 · 10 ²
	insoluble	1,7 · 10 ³	7 · 10- ⁷	1,7 · 10 ²	1,0 · 10 ²
²⁴⁹ ₉₇ Bk	soluble	2,3	9 · 10-10	2,3 · 10 ⁻¹	4,7 · 10 ²
	insoluble	3,0 · 10 ²	1 · 10-7	3,0 · 10 ¹	4,7 · 10 ²
²⁵⁰ ₉₇ Bk	soluble	3,6 · 10 ²	1 · 10-7	3,6 · 10 ¹	1,8 · 10 ²
	insoluble	2,8 · 10 ³	1 · 10-6	2,8 · 10 ²	1,8 · 10 ²
²⁵³ ₉₉ Es	soluble	1,9	8 · 10-10	1,9 · 10-1	1,8 · 10 ¹
	insoluble	1,5	6 · 10-10	1,5 · 10-1	1,8 · 10 ¹
^{254m} Es	soluble	1,3 · 10 ¹	5 · 10-9	1,3	1,5 · 10 ¹
	insoluble	1,5 · 10 ¹	6 · 10-9	1,5	1,5 · 10 ¹
²⁵⁴ ₉₉ Es	soluble	4,7 · 10 ⁻²	2 · 10-11	4,7 · 10-3	1,1 · 10 ¹
	insoluble	2,7 · 10 ⁻¹	1 · 10-10	2,7 · 10-2	1,1 · 10 ¹
²⁵⁵ ₉₉ Es	soluble	1,2	5 · 10-10	1,2 · 10-1	2,2 · 10 ¹
	insoluble	1,0	4 · 10-10	1,0 · 10-1	2,2 · 10 ¹
²⁵⁴ ₁₀₀ Fm	soluble	1,6 · 10 ²	6 · 10-8	1,6 · 10 ¹	9,6 · 10 ¹
	insoluble	1,8 · 10 ²	7 · 10-8	1,8 · 10 ¹	9,6 · 10 ¹
²⁵⁵ Fm	soluble	4,1 · 10 ¹	2 · 10 ⁻⁸	4,1	2,6 · 10 ¹
	insoluble	2,7 · 10 ¹	1 · 10 ⁻⁸	2,7	2,6 · 10 ¹
²⁵⁶ Fm	soluble	6,9	3 · 10-9	6,9 · 10-1	7,1 · 10-1
	insoluble	4,4	2 · 10-9	4,4 · 10-1	7,1 · 10-1

ANEXO IV

Establecimientos e instalaciones contempladas en el párrafo segundo de la letra a) del artículo 20

- 1. Establecimientos e instalaciones que incluyan reactores y conjuntos críticos.
- 2. Establecimientos e instalaciones que incluyan aceleradores y generadores de rayos X.
- 3. Establecimientos e instalaciones que incluyan fuentes selladas utilizadas en radioterapia y en gammagrafía e irradiadores industriales.
- 4. Instalaciones industriales que trabajen con torio y uranio natural o enriquecido:
 - fábricas de refino del uranio,
 - fábricas de concentración de mineral.
- 5. Fábricas de elementos combustibles.
- 6. Fábricas de tratamiento de combustibles irradiados.
- 7. Explotaciones mineras de uranio y torio.
- 8. Fábricas de tratamiento de residuos radioactivos y áreas de almacenamiento.
- 9. Laboratorios y fábricas de alta actividad.